airflow.providers.cncf.kubernetes.sensors.spark_kubernetes

Module Contents

class airflow.providers.cncf.kubernetes.sensors.spark_kubernetes.SparkKubernetesSensor(*, application_name: str, attach_log: bool = False, namespace: Optional[str] = None, kubernetes_conn_id: str = 'kubernetes_default', api_group: str = 'sparkoperator.k8s.io', api_version: str = 'v1beta2', **kwargs)[source]

Bases: airflow.sensors.base.BaseSensorOperator

Checks sparkApplication object in kubernetes cluster:

See also

For more detail about Spark Application Object have a look at the reference: https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/v1beta2-1.1.0-2.4.5/docs/api-docs.md#sparkapplication

Parameters
  • application_name (str) – spark Application resource name

  • namespace (str) – the kubernetes namespace where the sparkApplication reside in

  • kubernetes_conn_id (str) – the connection to Kubernetes cluster

  • attach_log (bool) – determines whether logs for driver pod should be appended to the sensor log

  • api_group (str) – kubernetes api group of sparkApplication

  • api_version (str) – kubernetes api version of sparkApplication

template_fields = ['application_name', 'namespace'][source]
FAILURE_STATES = ['FAILED', 'UNKNOWN'][source]
SUCCESS_STATES = ['COMPLETED'][source]
_log_driver(self, application_state: str, response: dict)[source]
poke(self, context: Dict)[source]

Was this entry helpful?