Source code for airflow.sensors.time_sensor

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import datetime
from typing import TYPE_CHECKING, Any, NoReturn

from airflow.sensors.base import BaseSensorOperator
from airflow.triggers.base import StartTriggerArgs
from airflow.triggers.temporal import DateTimeTrigger
from airflow.utils import timezone

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class TimeSensor(BaseSensorOperator): """ Waits until the specified time of the day. :param target_time: time after which the job succeeds .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/operator:TimeSensor` """ def __init__(self, *, target_time: datetime.time, **kwargs) -> None: super().__init__(**kwargs) self.target_time = target_time
[docs] def poke(self, context: Context) -> bool: self.log.info("Checking if the time (%s) has come", self.target_time) return timezone.make_naive(timezone.utcnow(), self.dag.timezone).time() > self.target_time
[docs]class TimeSensorAsync(BaseSensorOperator): """ Waits until the specified time of the day. This frees up a worker slot while it is waiting. :param target_time: time after which the job succeeds :param start_from_trigger: Start the task directly from the triggerer without going into the worker. :param end_from_trigger: End the task directly from the triggerer without going into the worker. :param trigger_kwargs: The keyword arguments passed to the trigger when start_from_trigger is set to True during dynamic task mapping. This argument is not used in standard usage. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/operator:TimeSensorAsync` """
[docs] start_trigger_args = StartTriggerArgs( trigger_cls="airflow.triggers.temporal.DateTimeTrigger", trigger_kwargs={"moment": "", "end_from_trigger": False}, next_method="execute_complete", next_kwargs=None, timeout=None, )
[docs] start_from_trigger = False
def __init__( self, *, target_time: datetime.time, start_from_trigger: bool = False, trigger_kwargs: dict[str, Any] | None = None, end_from_trigger: bool = False, **kwargs, ) -> None: super().__init__(**kwargs) self.start_from_trigger = start_from_trigger self.end_from_trigger = end_from_trigger self.target_time = target_time aware_time = timezone.coerce_datetime( datetime.datetime.combine(datetime.datetime.today(), self.target_time, self.dag.timezone) ) self.target_datetime = timezone.convert_to_utc(aware_time) if self.start_from_trigger: self.start_trigger_args.trigger_kwargs = dict( moment=self.target_datetime, end_from_trigger=self.end_from_trigger )
[docs] def execute(self, context: Context) -> NoReturn: self.defer( trigger=DateTimeTrigger(moment=self.target_datetime, end_from_trigger=self.end_from_trigger), method_name="execute_complete", )
[docs] def execute_complete(self, context: Context, event: Any = None) -> None: """Handle the event when the trigger fires and return immediately.""" return None

Was this entry helpful?