Source code for airflow.sensors.time_sensor
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import datetime
from typing import TYPE_CHECKING, Any, NoReturn
from airflow.sensors.base import BaseSensorOperator
from airflow.triggers.base import StartTriggerArgs
from airflow.triggers.temporal import DateTimeTrigger
from airflow.utils import timezone
if TYPE_CHECKING:
from airflow.utils.context import Context
[docs]class TimeSensor(BaseSensorOperator):
"""
Waits until the specified time of the day.
:param target_time: time after which the job succeeds
.. seealso::
For more information on how to use this sensor, take a look at the guide:
:ref:`howto/operator:TimeSensor`
"""
def __init__(self, *, target_time: datetime.time, **kwargs) -> None:
super().__init__(**kwargs)
self.target_time = target_time
[docs] def poke(self, context: Context) -> bool:
self.log.info("Checking if the time (%s) has come", self.target_time)
return timezone.make_naive(timezone.utcnow(), self.dag.timezone).time() > self.target_time
[docs]class TimeSensorAsync(BaseSensorOperator):
"""
Waits until the specified time of the day.
This frees up a worker slot while it is waiting.
:param target_time: time after which the job succeeds
:param start_from_trigger: Start the task directly from the triggerer without going into the worker.
:param end_from_trigger: End the task directly from the triggerer without going into the worker.
:param trigger_kwargs: The keyword arguments passed to the trigger when start_from_trigger is set to True
during dynamic task mapping. This argument is not used in standard usage.
.. seealso::
For more information on how to use this sensor, take a look at the guide:
:ref:`howto/operator:TimeSensorAsync`
"""
[docs] start_trigger_args = StartTriggerArgs(
trigger_cls="airflow.triggers.temporal.DateTimeTrigger",
trigger_kwargs={"moment": "", "end_from_trigger": False},
next_method="execute_complete",
next_kwargs=None,
timeout=None,
)
[docs] start_from_trigger = False
def __init__(
self,
*,
target_time: datetime.time,
start_from_trigger: bool = False,
trigger_kwargs: dict[str, Any] | None = None,
end_from_trigger: bool = False,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.start_from_trigger = start_from_trigger
self.end_from_trigger = end_from_trigger
self.target_time = target_time
aware_time = timezone.coerce_datetime(
datetime.datetime.combine(datetime.datetime.today(), self.target_time, self.dag.timezone)
)
self.target_datetime = timezone.convert_to_utc(aware_time)
if self.start_from_trigger:
self.start_trigger_args.trigger_kwargs = dict(
moment=self.target_datetime, end_from_trigger=self.end_from_trigger
)
[docs] def execute(self, context: Context) -> NoReturn:
self.defer(
trigger=DateTimeTrigger(moment=self.target_datetime, end_from_trigger=self.end_from_trigger),
method_name="execute_complete",
)
[docs] def execute_complete(self, context: Context, event: Any = None) -> None:
"""Handle the event when the trigger fires and return immediately."""
return None