Source code for airflow.models.dagbag

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import hashlib
import importlib
import importlib.machinery
import importlib.util
import os
import sys
import textwrap
import traceback
import warnings
import zipfile
from datetime import datetime, timedelta
from pathlib import Path
from typing import TYPE_CHECKING, NamedTuple

from sqlalchemy import (
    Column,
    String,
)
from sqlalchemy.exc import OperationalError
from tabulate import tabulate

from airflow import settings
from airflow.configuration import conf
from airflow.exceptions import (
    AirflowClusterPolicyError,
    AirflowClusterPolicySkipDag,
    AirflowClusterPolicyViolation,
    AirflowDagCycleException,
    AirflowDagDuplicatedIdException,
    AirflowException,
    AirflowTaskTimeout,
    RemovedInAirflow3Warning,
)
from airflow.listeners.listener import get_listener_manager
from airflow.models.base import Base
from airflow.stats import Stats
from airflow.utils import timezone
from airflow.utils.dag_cycle_tester import check_cycle
from airflow.utils.docs import get_docs_url
from airflow.utils.file import (
    correct_maybe_zipped,
    get_unique_dag_module_name,
    list_py_file_paths,
    might_contain_dag,
)
from airflow.utils.log.logging_mixin import LoggingMixin
from airflow.utils.retries import MAX_DB_RETRIES, run_with_db_retries
from airflow.utils.session import NEW_SESSION, provide_session
from airflow.utils.timeout import timeout
from airflow.utils.types import NOTSET
from airflow.utils.warnings import capture_with_reraise

if TYPE_CHECKING:
    from sqlalchemy.orm import Session

    from airflow.models.dag import DAG
    from airflow.utils.types import ArgNotSet


[docs]class FileLoadStat(NamedTuple): """ Information about single file. :param file: Loaded file. :param duration: Time spent on process file. :param dag_num: Total number of DAGs loaded in this file. :param task_num: Total number of Tasks loaded in this file. :param dags: DAGs names loaded in this file. :param warning_num: Total number of warnings captured from processing this file. """
[docs] file: str
[docs] duration: timedelta
[docs] dag_num: int
[docs] task_num: int
[docs] dags: str
[docs] warning_num: int
[docs]class DagBag(LoggingMixin): """ A dagbag is a collection of dags, parsed out of a folder tree and has high level configuration settings. Some possible setting are database to use as a backend and what executor to use to fire off tasks. This makes it easier to run distinct environments for say production and development, tests, or for different teams or security profiles. What would have been system level settings are now dagbag level so that one system can run multiple, independent settings sets. :param dag_folder: the folder to scan to find DAGs :param include_examples: whether to include the examples that ship with airflow or not :param safe_mode: when ``False``, scans all python modules for dags. When ``True`` uses heuristics (files containing ``DAG`` and ``airflow`` strings) to filter python modules to scan for dags. :param read_dags_from_db: Read DAGs from DB if ``True`` is passed. If ``False`` DAGs are read from python files. :param store_serialized_dags: deprecated parameter, same effect as `read_dags_from_db` :param load_op_links: Should the extra operator link be loaded via plugins when de-serializing the DAG? This flag is set to False in Scheduler so that Extra Operator links are not loaded to not run User code in Scheduler. :param collect_dags: when True, collects dags during class initialization. """ def __init__( self, dag_folder: str | Path | None = None, include_examples: bool | ArgNotSet = NOTSET, safe_mode: bool | ArgNotSet = NOTSET, read_dags_from_db: bool = False, store_serialized_dags: bool | None = None, load_op_links: bool = True, collect_dags: bool = True, ): # Avoid circular import super().__init__() include_examples = ( include_examples if isinstance(include_examples, bool) else conf.getboolean("core", "LOAD_EXAMPLES") ) safe_mode = ( safe_mode if isinstance(safe_mode, bool) else conf.getboolean("core", "DAG_DISCOVERY_SAFE_MODE") ) if store_serialized_dags: warnings.warn( "The store_serialized_dags parameter has been deprecated. " "You should pass the read_dags_from_db parameter.", RemovedInAirflow3Warning, stacklevel=2, ) read_dags_from_db = store_serialized_dags dag_folder = dag_folder or settings.DAGS_FOLDER self.dag_folder = dag_folder self.dags: dict[str, DAG] = {} # the file's last modified timestamp when we last read it self.file_last_changed: dict[str, datetime] = {} self.import_errors: dict[str, str] = {} self.captured_warnings: dict[str, tuple[str, ...]] = {} self.has_logged = False self.read_dags_from_db = read_dags_from_db # Only used by read_dags_from_db=True self.dags_last_fetched: dict[str, datetime] = {} # Only used by SchedulerJob to compare the dag_hash to identify change in DAGs self.dags_hash: dict[str, str] = {} self.dagbag_import_error_tracebacks = conf.getboolean("core", "dagbag_import_error_tracebacks") self.dagbag_import_error_traceback_depth = conf.getint("core", "dagbag_import_error_traceback_depth") if collect_dags: self.collect_dags( dag_folder=dag_folder, include_examples=include_examples, safe_mode=safe_mode, ) # Should the extra operator link be loaded via plugins? # This flag is set to False in Scheduler so that Extra Operator links are not loaded self.load_op_links = load_op_links
[docs] def size(self) -> int: """:return: the amount of dags contained in this dagbag""" return len(self.dags)
@property
[docs] def store_serialized_dags(self) -> bool: """Whether to read dags from DB.""" warnings.warn( "The store_serialized_dags property has been deprecated. Use read_dags_from_db instead.", RemovedInAirflow3Warning, stacklevel=2, ) return self.read_dags_from_db
@property
[docs] def dag_ids(self) -> list[str]: """ Get DAG ids. :return: a list of DAG IDs in this bag """ return list(self.dags)
@provide_session
[docs] def get_dag(self, dag_id, session: Session = None): """ Get the DAG out of the dictionary, and refreshes it if expired. :param dag_id: DAG ID """ # Avoid circular import from airflow.models.dag import DagModel if self.read_dags_from_db: # Import here so that serialized dag is only imported when serialization is enabled from airflow.models.serialized_dag import SerializedDagModel if dag_id not in self.dags: # Load from DB if not (yet) in the bag self._add_dag_from_db(dag_id=dag_id, session=session) return self.dags.get(dag_id) # If DAG is in the DagBag, check the following # 1. if time has come to check if DAG is updated (controlled by min_serialized_dag_fetch_secs) # 2. check the last_updated and hash columns in SerializedDag table to see if # Serialized DAG is updated # 3. if (2) is yes, fetch the Serialized DAG. # 4. if (2) returns None (i.e. Serialized DAG is deleted), remove dag from dagbag # if it exists and return None. min_serialized_dag_fetch_secs = timedelta(seconds=settings.MIN_SERIALIZED_DAG_FETCH_INTERVAL) if ( dag_id in self.dags_last_fetched and timezone.utcnow() > self.dags_last_fetched[dag_id] + min_serialized_dag_fetch_secs ): sd_latest_version_and_updated_datetime = ( SerializedDagModel.get_latest_version_hash_and_updated_datetime( dag_id=dag_id, session=session ) ) if not sd_latest_version_and_updated_datetime: self.log.warning("Serialized DAG %s no longer exists", dag_id) del self.dags[dag_id] del self.dags_last_fetched[dag_id] del self.dags_hash[dag_id] return None sd_latest_version, sd_last_updated_datetime = sd_latest_version_and_updated_datetime if ( sd_last_updated_datetime > self.dags_last_fetched[dag_id] or sd_latest_version != self.dags_hash[dag_id] ): self._add_dag_from_db(dag_id=dag_id, session=session) return self.dags.get(dag_id) # If asking for a known subdag, we want to refresh the parent dag = None root_dag_id = dag_id if dag_id in self.dags: dag = self.dags[dag_id] if dag.parent_dag: root_dag_id = dag.parent_dag.dag_id # If DAG Model is absent, we can't check last_expired property. Is the DAG not yet synchronized? orm_dag = DagModel.get_current(root_dag_id, session=session) if not orm_dag: return self.dags.get(dag_id) # If the dag corresponding to root_dag_id is absent or expired is_missing = root_dag_id not in self.dags is_expired = orm_dag.last_expired and dag and dag.last_loaded < orm_dag.last_expired if is_expired: # Remove associated dags so we can re-add them. self.dags = { key: dag for key, dag in self.dags.items() if root_dag_id != key and not (dag.parent_dag and root_dag_id == dag.parent_dag.dag_id) } if is_missing or is_expired: # Reprocess source file. found_dags = self.process_file( filepath=correct_maybe_zipped(orm_dag.fileloc), only_if_updated=False ) # If the source file no longer exports `dag_id`, delete it from self.dags if found_dags and dag_id in [found_dag.dag_id for found_dag in found_dags]: return self.dags[dag_id] elif dag_id in self.dags: del self.dags[dag_id] return self.dags.get(dag_id)
def _add_dag_from_db(self, dag_id: str, session: Session): """Add DAG to DagBag from DB.""" from airflow.models.serialized_dag import SerializedDagModel row = SerializedDagModel.get(dag_id, session) if not row: return None row.load_op_links = self.load_op_links dag = row.dag for subdag in dag.subdags: self.dags[subdag.dag_id] = subdag self.dags[dag.dag_id] = dag self.dags_last_fetched[dag.dag_id] = timezone.utcnow() self.dags_hash[dag.dag_id] = row.dag_hash
[docs] def process_file(self, filepath, only_if_updated=True, safe_mode=True): """Given a path to a python module or zip file, import the module and look for dag objects within.""" from airflow.models.dag import DagContext # if the source file no longer exists in the DB or in the filesystem, # return an empty list # todo: raise exception? if filepath is None or not os.path.isfile(filepath): return [] try: # This failed before in what may have been a git sync # race condition file_last_changed_on_disk = datetime.fromtimestamp(os.path.getmtime(filepath)) if ( only_if_updated and filepath in self.file_last_changed and file_last_changed_on_disk == self.file_last_changed[filepath] ): return [] except Exception as e: self.log.exception(e) return [] # Ensure we don't pick up anything else we didn't mean to DagContext.autoregistered_dags.clear() self.captured_warnings.pop(filepath, None) with capture_with_reraise() as captured_warnings: if filepath.endswith(".py") or not zipfile.is_zipfile(filepath): mods = self._load_modules_from_file(filepath, safe_mode) else: mods = self._load_modules_from_zip(filepath, safe_mode) if captured_warnings: formatted_warnings = [] for msg in captured_warnings: category = msg.category.__name__ if (module := msg.category.__module__) != "builtins": category = f"{module}.{category}" formatted_warnings.append(f"{msg.filename}:{msg.lineno}: {category}: {msg.message}") self.captured_warnings[filepath] = tuple(formatted_warnings) found_dags = self._process_modules(filepath, mods, file_last_changed_on_disk) self.file_last_changed[filepath] = file_last_changed_on_disk return found_dags
def _load_modules_from_file(self, filepath, safe_mode): from airflow.models.dag import DagContext if not might_contain_dag(filepath, safe_mode): # Don't want to spam user with skip messages if not self.has_logged: self.has_logged = True self.log.info("File %s assumed to contain no DAGs. Skipping.", filepath) return [] self.log.debug("Importing %s", filepath) mod_name = get_unique_dag_module_name(filepath) if mod_name in sys.modules: del sys.modules[mod_name] DagContext.current_autoregister_module_name = mod_name def parse(mod_name, filepath): try: loader = importlib.machinery.SourceFileLoader(mod_name, filepath) spec = importlib.util.spec_from_loader(mod_name, loader) new_module = importlib.util.module_from_spec(spec) sys.modules[spec.name] = new_module loader.exec_module(new_module) return [new_module] except (Exception, AirflowTaskTimeout) as e: DagContext.autoregistered_dags.clear() self.log.exception("Failed to import: %s", filepath) if self.dagbag_import_error_tracebacks: self.import_errors[filepath] = traceback.format_exc( limit=-self.dagbag_import_error_traceback_depth ) else: self.import_errors[filepath] = str(e) return [] dagbag_import_timeout = settings.get_dagbag_import_timeout(filepath) if not isinstance(dagbag_import_timeout, (int, float)): raise TypeError( f"Value ({dagbag_import_timeout}) from get_dagbag_import_timeout must be int or float" ) if dagbag_import_timeout <= 0: # no parsing timeout return parse(mod_name, filepath) timeout_msg = ( f"DagBag import timeout for {filepath} after {dagbag_import_timeout}s.\n" "Please take a look at these docs to improve your DAG import time:\n" f"* {get_docs_url('best-practices.html#top-level-python-code')}\n" f"* {get_docs_url('best-practices.html#reducing-dag-complexity')}" ) with timeout(dagbag_import_timeout, error_message=timeout_msg): return parse(mod_name, filepath) def _load_modules_from_zip(self, filepath, safe_mode): from airflow.models.dag import DagContext mods = [] with zipfile.ZipFile(filepath) as current_zip_file: for zip_info in current_zip_file.infolist(): zip_path = Path(zip_info.filename) if zip_path.suffix not in [".py", ".pyc"] or len(zip_path.parts) > 1: continue if zip_path.stem == "__init__": self.log.warning("Found %s at root of %s", zip_path.name, filepath) self.log.debug("Reading %s from %s", zip_info.filename, filepath) if not might_contain_dag(zip_info.filename, safe_mode, current_zip_file): # todo: create ignore list # Don't want to spam user with skip messages if not self.has_logged: self.has_logged = True self.log.info( "File %s:%s assumed to contain no DAGs. Skipping.", filepath, zip_info.filename ) continue mod_name = zip_path.stem if mod_name in sys.modules: del sys.modules[mod_name] DagContext.current_autoregister_module_name = mod_name try: sys.path.insert(0, filepath) current_module = importlib.import_module(mod_name) mods.append(current_module) except Exception as e: DagContext.autoregistered_dags.clear() fileloc = os.path.join(filepath, zip_info.filename) self.log.exception("Failed to import: %s", fileloc) if self.dagbag_import_error_tracebacks: self.import_errors[fileloc] = traceback.format_exc( limit=-self.dagbag_import_error_traceback_depth ) else: self.import_errors[fileloc] = str(e) finally: if sys.path[0] == filepath: del sys.path[0] return mods def _process_modules(self, filepath, mods, file_last_changed_on_disk): from airflow.models.dag import DAG, DagContext # Avoid circular import top_level_dags = {(o, m) for m in mods for o in m.__dict__.values() if isinstance(o, DAG)} top_level_dags.update(DagContext.autoregistered_dags) DagContext.current_autoregister_module_name = None DagContext.autoregistered_dags.clear() found_dags = [] for dag, mod in top_level_dags: dag.fileloc = mod.__file__ try: dag.validate() self.bag_dag(dag=dag, root_dag=dag) except AirflowClusterPolicySkipDag: pass except Exception as e: self.log.exception("Failed to bag_dag: %s", dag.fileloc) self.import_errors[dag.fileloc] = f"{type(e).__name__}: {e}" self.file_last_changed[dag.fileloc] = file_last_changed_on_disk else: found_dags.append(dag) found_dags += dag.subdags return found_dags
[docs] def bag_dag(self, dag, root_dag): """ Add the DAG into the bag, recurses into sub dags. :raises: AirflowDagCycleException if a cycle is detected in this dag or its subdags. :raises: AirflowDagDuplicatedIdException if this dag or its subdags already exists in the bag. """ self._bag_dag(dag=dag, root_dag=root_dag, recursive=True)
def _bag_dag(self, *, dag, root_dag, recursive): """ Actual implementation of bagging a dag. The only purpose of this is to avoid exposing ``recursive`` in ``bag_dag()``, intended to only be used by the ``_bag_dag()`` implementation. """ check_cycle(dag) # throws if a task cycle is found dag.resolve_template_files() dag.last_loaded = timezone.utcnow() try: # Check policies settings.dag_policy(dag) for task in dag.tasks: # The listeners are not supported when ending a task via a trigger on asynchronous operators. if getattr(task, "end_from_trigger", False) and get_listener_manager().has_listeners: raise AirflowException( "Listeners are not supported with end_from_trigger=True for deferrable operators. " "Task %s in DAG %s has end_from_trigger=True with listeners from plugins. " "Set end_from_trigger=False to use listeners.", task.task_id, dag.dag_id, ) settings.task_policy(task) except (AirflowClusterPolicyViolation, AirflowClusterPolicySkipDag): raise except Exception as e: self.log.exception(e) raise AirflowClusterPolicyError(e) subdags = dag.subdags try: # DAG.subdags automatically performs DFS search, so we don't recurse # into further _bag_dag() calls. if recursive: for subdag in subdags: subdag.fileloc = dag.fileloc subdag.parent_dag = dag self._bag_dag(dag=subdag, root_dag=root_dag, recursive=False) prev_dag = self.dags.get(dag.dag_id) if prev_dag and prev_dag.fileloc != dag.fileloc: raise AirflowDagDuplicatedIdException( dag_id=dag.dag_id, incoming=dag.fileloc, existing=self.dags[dag.dag_id].fileloc, ) self.dags[dag.dag_id] = dag self.log.debug("Loaded DAG %s", dag) except (AirflowDagCycleException, AirflowDagDuplicatedIdException): # There was an error in bagging the dag. Remove it from the list of dags self.log.exception("Exception bagging dag: %s", dag.dag_id) # Only necessary at the root level since DAG.subdags automatically # performs DFS to search through all subdags if recursive: for subdag in subdags: if subdag.dag_id in self.dags: del self.dags[subdag.dag_id] raise
[docs] def collect_dags( self, dag_folder: str | Path | None = None, only_if_updated: bool = True, include_examples: bool = conf.getboolean("core", "LOAD_EXAMPLES"), safe_mode: bool = conf.getboolean("core", "DAG_DISCOVERY_SAFE_MODE"), ): """ Look for python modules in a given path, import them, and add them to the dagbag collection. Note that if a ``.airflowignore`` file is found while processing the directory, it will behave much like a ``.gitignore``, ignoring files that match any of the patterns specified in the file. **Note**: The patterns in ``.airflowignore`` are interpreted as either un-anchored regexes or gitignore-like glob expressions, depending on the ``DAG_IGNORE_FILE_SYNTAX`` configuration parameter. """ if self.read_dags_from_db: return self.log.info("Filling up the DagBag from %s", dag_folder) dag_folder = dag_folder or self.dag_folder # Used to store stats around DagBag processing stats = [] # Ensure dag_folder is a str -- it may have been a pathlib.Path dag_folder = correct_maybe_zipped(str(dag_folder)) for filepath in list_py_file_paths( dag_folder, safe_mode=safe_mode, include_examples=include_examples, ): try: file_parse_start_dttm = timezone.utcnow() found_dags = self.process_file(filepath, only_if_updated=only_if_updated, safe_mode=safe_mode) file_parse_end_dttm = timezone.utcnow() stats.append( FileLoadStat( file=filepath.replace(settings.DAGS_FOLDER, ""), duration=file_parse_end_dttm - file_parse_start_dttm, dag_num=len(found_dags), task_num=sum(len(dag.tasks) for dag in found_dags), dags=str([dag.dag_id for dag in found_dags]), warning_num=len(self.captured_warnings.get(filepath, [])), ) ) except Exception as e: self.log.exception(e) self.dagbag_stats = sorted(stats, key=lambda x: x.duration, reverse=True)
[docs] def collect_dags_from_db(self): """Collect DAGs from database.""" from airflow.models.serialized_dag import SerializedDagModel with Stats.timer("collect_db_dags"): self.log.info("Filling up the DagBag from database") # The dagbag contains all rows in serialized_dag table. Deleted DAGs are deleted # from the table by the scheduler job. self.dags = SerializedDagModel.read_all_dags() # Adds subdags. # DAG post-processing steps such as self.bag_dag and croniter are not needed as # they are done by scheduler before serialization. subdags = {} for dag in self.dags.values(): for subdag in dag.subdags: subdags[subdag.dag_id] = subdag self.dags.update(subdags)
[docs] def dagbag_report(self): """Print a report around DagBag loading stats.""" stats = self.dagbag_stats dag_folder = self.dag_folder duration = sum((o.duration for o in stats), timedelta()).total_seconds() dag_num = sum(o.dag_num for o in stats) task_num = sum(o.task_num for o in stats) table = tabulate(stats, headers="keys") report = textwrap.dedent( f"""\n ------------------------------------------------------------------- DagBag loading stats for {dag_folder} ------------------------------------------------------------------- Number of DAGs: {dag_num} Total task number: {task_num} DagBag parsing time: {duration}\n{table} """ ) return report
@classmethod @provide_session def _sync_to_db( cls, dags: dict[str, DAG], processor_subdir: str | None = None, session: Session = NEW_SESSION, ): """Save attributes about list of DAG to the DB.""" # To avoid circular import - airflow.models.dagbag -> airflow.models.dag -> airflow.models.dagbag from airflow.models.dag import DAG from airflow.models.serialized_dag import SerializedDagModel log = cls.logger() def _serialize_dag_capturing_errors(dag, session, processor_subdir): """ Try to serialize the dag to the DB, but make a note of any errors. We can't place them directly in import_errors, as this may be retried, and work the next time """ if dag.is_subdag: return [] try: # We can't use bulk_write_to_db as we want to capture each error individually dag_was_updated = SerializedDagModel.write_dag( dag, min_update_interval=settings.MIN_SERIALIZED_DAG_UPDATE_INTERVAL, session=session, processor_subdir=processor_subdir, ) if dag_was_updated: DagBag._sync_perm_for_dag(dag, session=session) return [] except OperationalError: raise except Exception: log.exception("Failed to write serialized DAG: %s", dag.fileloc) dagbag_import_error_traceback_depth = conf.getint( "core", "dagbag_import_error_traceback_depth" ) return [(dag.fileloc, traceback.format_exc(limit=-dagbag_import_error_traceback_depth))] # Retry 'DAG.bulk_write_to_db' & 'SerializedDagModel.bulk_sync_to_db' in case # of any Operational Errors # In case of failures, provide_session handles rollback import_errors = {} for attempt in run_with_db_retries(logger=log): with attempt: serialize_errors = [] log.debug( "Running dagbag.sync_to_db with retries. Try %d of %d", attempt.retry_state.attempt_number, MAX_DB_RETRIES, ) log.debug("Calling the DAG.bulk_sync_to_db method") try: # Write Serialized DAGs to DB, capturing errors for dag in dags.values(): serialize_errors.extend( _serialize_dag_capturing_errors(dag, session, processor_subdir) ) DAG.bulk_write_to_db(dags.values(), processor_subdir=processor_subdir, session=session) except OperationalError: session.rollback() raise # Only now we are "complete" do we update import_errors - don't want to record errors from # previous failed attempts import_errors.update(dict(serialize_errors)) return import_errors @provide_session
[docs] def sync_to_db(self, processor_subdir: str | None = None, session: Session = NEW_SESSION): import_errors = DagBag._sync_to_db(dags=self.dags, processor_subdir=processor_subdir, session=session) self.import_errors.update(import_errors)
@classmethod @provide_session def _sync_perm_for_dag(cls, dag: DAG, session: Session = NEW_SESSION): """Sync DAG specific permissions.""" root_dag_id = dag.parent_dag.dag_id if dag.parent_dag else dag.dag_id cls.logger().debug("Syncing DAG permissions: %s to the DB", root_dag_id) from airflow.www.security_appless import ApplessAirflowSecurityManager security_manager = ApplessAirflowSecurityManager(session=session) security_manager.sync_perm_for_dag(root_dag_id, dag.access_control)
[docs]def generate_md5_hash(context): fileloc = context.get_current_parameters()["fileloc"] return hashlib.md5(fileloc.encode()).hexdigest()
[docs]class DagPriorityParsingRequest(Base): """Model to store the dag parsing requests that will be prioritized when parsing files."""
[docs] __tablename__ = "dag_priority_parsing_request"
# Adding a unique constraint to fileloc results in the creation of an index and we have a limitation # on the size of the string we can use in the index for MySQL DB. We also have to keep the fileloc # size consistent with other tables. This is a workaround to enforce the unique constraint.
[docs] id = Column(String(32), primary_key=True, default=generate_md5_hash, onupdate=generate_md5_hash)
# The location of the file containing the DAG object # Note: Do not depend on fileloc pointing to a file; in the case of a # packaged DAG, it will point to the subpath of the DAG within the # associated zip.
[docs] fileloc = Column(String(2000), nullable=False)
def __init__(self, fileloc: str) -> None: super().__init__() self.fileloc = fileloc
[docs] def __repr__(self) -> str: return f"<DagPriorityParsingRequest: fileloc={self.fileloc}>"

Was this entry helpful?