# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example DAG for demonstrating behavior of Datasets feature.
Notes on usage:
Turn on all the dags.
DAG example_dataset_dag1 should run because it's on a schedule.
After example_dataset_dag1 runs, example_dataset_dag3_req_dag1 should be triggered immediately
because its only dataset dependency is managed by example_dataset_dag1.
No other dags should be triggered. Note that even though example_dataset_dag4_req_dag1_dag2 depends on
the dataset in example_dataset_dag1, it will not be triggered until example_dataset_dag2 runs
(and example_dataset_dag2 is left with no schedule so that we can trigger it manually).
Next, trigger example_dataset_dag2. After example_dataset_dag2 finishes,
example_dataset_dag4_req_dag1_dag2 should run.
Dags example_dataset_dag5_req_dag1_D and example_dataset_dag6_req_DD should not run because they depend on
datasets that never get updated.
"""
from __future__ import annotations
import pendulum
from airflow import DAG, Dataset
from airflow.operators.bash import BashOperator
# [START dataset_def]
[docs]dag1_dataset = Dataset('s3://dag1/output_1.txt', extra={'hi': 'bye'})
# [END dataset_def]
[docs]dag2_dataset = Dataset('s3://dag2/output_1.txt', extra={'hi': 'bye'})
with DAG(
dag_id='dataset_produces_1',
catchup=False,
start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
schedule='@daily',
tags=['produces', 'dataset-scheduled'],
) as dag1:
# [START task_outlet]
BashOperator(outlets=[dag1_dataset], task_id='producing_task_1', bash_command="sleep 5")
# [END task_outlet]
with DAG(
dag_id='dataset_produces_2',
catchup=False,
start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
schedule=None,
tags=['produces', 'dataset-scheduled'],
) as dag2:
BashOperator(outlets=[dag2_dataset], task_id='producing_task_2', bash_command="sleep 5")
# [START dag_dep]
with DAG(
dag_id='dataset_consumes_1',
catchup=False,
start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
schedule=[dag1_dataset],
tags=['consumes', 'dataset-scheduled'],
) as dag3:
# [END dag_dep]
BashOperator(
outlets=[Dataset('s3://consuming_1_task/dataset_other.txt')],
task_id='consuming_1',
bash_command="sleep 5",
)
with DAG(
dag_id='dataset_consumes_1_and_2',
catchup=False,
start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
schedule=[dag1_dataset, dag2_dataset],
tags=['consumes', 'dataset-scheduled'],
) as dag4:
BashOperator(
outlets=[Dataset('s3://consuming_2_task/dataset_other_unknown.txt')],
task_id='consuming_2',
bash_command="sleep 5",
)
with DAG(
dag_id='dataset_consumes_1_never_scheduled',
catchup=False,
start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
schedule=[
dag1_dataset,
Dataset('s3://this-dataset-doesnt-get-triggered'),
],
tags=['consumes', 'dataset-scheduled'],
) as dag5:
BashOperator(
outlets=[Dataset('s3://consuming_2_task/dataset_other_unknown.txt')],
task_id='consuming_3',
bash_command="sleep 5",
)
with DAG(
dag_id='dataset_consumes_unknown_never_scheduled',
catchup=False,
start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
schedule=[
Dataset('s3://unrelated/dataset3.txt'),
Dataset('s3://unrelated/dataset_other_unknown.txt'),
],
tags=['dataset-scheduled'],
) as dag6:
BashOperator(
task_id='unrelated_task',
outlets=[Dataset('s3://unrelated_task/dataset_other_unknown.txt')],
bash_command="sleep 5",
)