Source code for tests.system.yandex.example_yandexcloud_dataproc

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import uuid
from datetime import datetime

from airflow import DAG
from airflow.providers.yandex.operators.dataproc import (
    DataprocCreateClusterOperator,
    DataprocCreateHiveJobOperator,
    DataprocCreateMapReduceJobOperator,
    DataprocCreatePysparkJobOperator,
    DataprocCreateSparkJobOperator,
    DataprocDeleteClusterOperator,
)

# Name of the datacenter where Dataproc cluster will be created
from airflow.utils.trigger_rule import TriggerRule

from tests_common.test_utils.system_tests import get_test_env_id

# should be filled with appropriate ids


[docs]AVAILABILITY_ZONE_ID = "ru-central1-c"
# Dataproc cluster jobs will produce logs in specified s3 bucket
[docs]S3_BUCKET_NAME_FOR_JOB_LOGS = ""
[docs]ENV_ID = get_test_env_id()
[docs]DAG_ID = "example_yandexcloud_dataproc_operator"
with DAG( DAG_ID, schedule=None, start_date=datetime(2021, 1, 1), tags=["example"], ) as dag:
[docs] create_cluster = DataprocCreateClusterOperator( task_id="create_cluster", zone=AVAILABILITY_ZONE_ID, s3_bucket=S3_BUCKET_NAME_FOR_JOB_LOGS, computenode_count=1, computenode_max_hosts_count=5, )
create_hive_query = DataprocCreateHiveJobOperator( task_id="create_hive_query", query="SELECT 1;", ) create_hive_query_from_file = DataprocCreateHiveJobOperator( task_id="create_hive_query_from_file", query_file_uri="s3a://data-proc-public/jobs/sources/hive-001/main.sql", script_variables={ "CITIES_URI": "s3a://data-proc-public/jobs/sources/hive-001/cities/", "COUNTRY_CODE": "RU", }, ) create_mapreduce_job = DataprocCreateMapReduceJobOperator( task_id="create_mapreduce_job", main_class="org.apache.hadoop.streaming.HadoopStreaming", file_uris=[ "s3a://data-proc-public/jobs/sources/mapreduce-001/mapper.py", "s3a://data-proc-public/jobs/sources/mapreduce-001/reducer.py", ], args=[ "-mapper", "mapper.py", "-reducer", "reducer.py", "-numReduceTasks", "1", "-input", "s3a://data-proc-public/jobs/sources/data/cities500.txt.bz2", "-output", f"s3a://{S3_BUCKET_NAME_FOR_JOB_LOGS}/dataproc/job/results/{uuid.uuid4()}", ], properties={ "yarn.app.mapreduce.am.resource.mb": "2048", "yarn.app.mapreduce.am.command-opts": "-Xmx2048m", "mapreduce.job.maps": "6", }, ) create_spark_job = DataprocCreateSparkJobOperator( task_id="create_spark_job", main_jar_file_uri="s3a://data-proc-public/jobs/sources/java/dataproc-examples-1.0.jar", main_class="ru.yandex.cloud.dataproc.examples.PopulationSparkJob", file_uris=[ "s3a://data-proc-public/jobs/sources/data/config.json", ], archive_uris=[ "s3a://data-proc-public/jobs/sources/data/country-codes.csv.zip", ], jar_file_uris=[ "s3a://data-proc-public/jobs/sources/java/icu4j-61.1.jar", "s3a://data-proc-public/jobs/sources/java/commons-lang-2.6.jar", "s3a://data-proc-public/jobs/sources/java/opencsv-4.1.jar", "s3a://data-proc-public/jobs/sources/java/json-20190722.jar", ], args=[ "s3a://data-proc-public/jobs/sources/data/cities500.txt.bz2", f"s3a://{S3_BUCKET_NAME_FOR_JOB_LOGS}/dataproc/job/results/${{JOB_ID}}", ], properties={ "spark.submit.deployMode": "cluster", }, packages=["org.slf4j:slf4j-simple:1.7.30"], repositories=["https://repo1.maven.org/maven2"], exclude_packages=["com.amazonaws:amazon-kinesis-client"], ) create_pyspark_job = DataprocCreatePysparkJobOperator( task_id="create_pyspark_job", main_python_file_uri="s3a://data-proc-public/jobs/sources/pyspark-001/main.py", python_file_uris=[ "s3a://data-proc-public/jobs/sources/pyspark-001/geonames.py", ], file_uris=[ "s3a://data-proc-public/jobs/sources/data/config.json", ], archive_uris=[ "s3a://data-proc-public/jobs/sources/data/country-codes.csv.zip", ], args=[ "s3a://data-proc-public/jobs/sources/data/cities500.txt.bz2", f"s3a://{S3_BUCKET_NAME_FOR_JOB_LOGS}/dataproc/job/results/${{JOB_ID}}", ], jar_file_uris=[ "s3a://data-proc-public/jobs/sources/java/dataproc-examples-1.0.jar", "s3a://data-proc-public/jobs/sources/java/icu4j-61.1.jar", "s3a://data-proc-public/jobs/sources/java/commons-lang-2.6.jar", ], properties={ "spark.submit.deployMode": "cluster", }, packages=["org.slf4j:slf4j-simple:1.7.30"], repositories=["https://repo1.maven.org/maven2"], exclude_packages=["com.amazonaws:amazon-kinesis-client"], ) delete_cluster = DataprocDeleteClusterOperator( task_id="delete_cluster", trigger_rule=TriggerRule.ALL_DONE ) create_cluster >> create_mapreduce_job >> create_hive_query >> create_hive_query_from_file create_hive_query_from_file >> create_spark_job >> create_pyspark_job >> delete_cluster from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "teardown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?