Source code for tests.system.weaviate.example_weaviate_operator

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import pendulum
from weaviate.classes.config import DataType, Property
from weaviate.collections.classes.config import Configure

from airflow.decorators import dag, task, teardown
from airflow.providers.weaviate.operators.weaviate import (
    WeaviateDocumentIngestOperator,
    WeaviateIngestOperator,
)

[docs]COLLECTION_NAME = "QuestionWithoutVectorizerUsingOperator"
[docs]sample_data_with_vector = [ { "Answer": "Liver", "Category": "SCIENCE", "Question": "This organ removes excess glucose from the blood & stores it as glycogen", "Vector": [ -0.006632288, -0.0042016874, 0.030541966, ], }, { "Answer": "Elephant", "Category": "ANIMALS", "Question": "It's the only living mammal in the order Proboseidea", "Vector": [ -0.0166891, -0.00092290324, -0.0125168245, ], }, { "Answer": "the nose or snout", "Category": "ANIMALS", "Question": "The gavial looks very much like a crocodile except for this bodily feature", "Vector": [ -0.015592773, 0.019883318, 0.017782344, ], }, ]
[docs]sample_data_without_vector = [ { "Answer": "Liver", "Category": "SCIENCE", "Question": "This organ removes excess glucose from the blood & stores it as glycogen", }, { "Answer": "Elephant", "Category": "ANIMALS", "Question": "It's the only living mammal in the order Proboseidea", }, { "Answer": "the nose or snout", "Category": "ANIMALS", "Question": "The gavial looks very much like a crocodile except for this bodily feature", }, ]
[docs]def get_data_with_vectors(*args, **kwargs): return sample_data_with_vector
[docs]def get_data_without_vectors(*args, **kwargs): return sample_data_without_vector
@dag( schedule=None, start_date=pendulum.datetime(2021, 1, 1, tz="UTC"), catchup=False, tags=["example", "weaviate"], )
[docs]def example_weaviate_using_operator(): """ Example Weaviate DAG demonstrating usage of the operator. """ # Example tasks to create a Weaviate collection without vectorizers, store data with custom vectors in XCOM, and call # WeaviateIngestOperator to ingest data with those custom vectors. @task() def create_collection_without_vectorizer(): """ Example task to create collection without any Vectorizer. You're expected to provide custom vectors for your data. """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() # collection definition object. Weaviate's autoschema feature will infer properties when importing. weaviate_hook.create_collection(COLLECTION_NAME) @task(trigger_rule="all_done") def store_data_with_vectors_in_xcom(): return sample_data_with_vector # [START howto_operator_weaviate_embedding_and_ingest_xcom_data_with_vectors] batch_data_with_vectors_xcom_data = WeaviateIngestOperator( task_id="batch_data_with_vectors_xcom_data", conn_id="weaviate_default", collection_name=COLLECTION_NAME, input_data=store_data_with_vectors_in_xcom(), trigger_rule="all_done", ) # [END howto_operator_weaviate_embedding_and_ingest_xcom_data_with_vectors] # [START howto_operator_weaviate_embedding_and_ingest_callable_data_with_vectors] batch_data_with_vectors_callable_data = WeaviateIngestOperator( task_id="batch_data_with_vectors_callable_data", conn_id="weaviate_default", collection_name=COLLECTION_NAME, input_data=get_data_with_vectors(), trigger_rule="all_done", ) # [END howto_operator_weaviate_embedding_and_ingest_callable_data_with_vectors] # Example tasks to create collection with OpenAI vectorizer, store data without vectors in XCOM, and call # WeaviateIngestOperator to ingest data by internally generating OpenAI vectors while ingesting. @task() def create_collection_with_vectorizer(): """ Example task to create collection with OpenAI Vectorizer responsible for vectorining data using Weaviate cluster. """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() weaviate_hook.create_collection( "QuestionWithOpenAIVectorizerUsingOperator", description="Information from a Jeopardy! question", properties=[ Property(name="question", description="The question", data_type=DataType.TEXT), Property(name="answer", description="The answer", data_type=DataType.TEXT), Property(name="category", description="The category", data_type=DataType.TEXT), ], vectorizer_config=Configure.Vectorizer.text2vec_openai(), ) @task() def create_collection_for_doc_data_with_vectorizer(): """ Example task to create collection with OpenAI Vectorizer responsible for vectorining data using Weaviate cluster. """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() weaviate_hook.create_collection( "QuestionWithOpenAIVectorizerUsingOperatorDocs", description="Information from a Jeopardy! question", properties=[ Property(name="question", description="The question", data_type=DataType.TEXT), Property(name="answer", description="The answer", data_type=DataType.TEXT), Property(name="category", description="The category", data_type=DataType.TEXT), Property(name="docLink", description="URL for source document", data_type=DataType.TEXT), ], vectorizer_config=Configure.Vectorizer.text2vec_openai(), ) @task(trigger_rule="all_done") def store_data_without_vectors_in_xcom(): import json from pathlib import Path data = json.load(Path("jeopardy_data_without_vectors.json").open()) return data @task(trigger_rule="all_done") def store_doc_data_without_vectors_in_xcom(): import json from pathlib import Path data = json.load(Path("jeopardy_doc_data_without_vectors.json").open()) return data xcom_data_without_vectors = store_data_without_vectors_in_xcom() xcom_doc_data_without_vectors = store_doc_data_without_vectors_in_xcom() # [START howto_operator_weaviate_ingest_xcom_data_without_vectors] batch_data_without_vectors_xcom_data = WeaviateIngestOperator( task_id="batch_data_without_vectors_xcom_data", conn_id="weaviate_default", collection_name="QuestionWithOpenAIVectorizerUsingOperator", input_data=xcom_data_without_vectors["return_value"], trigger_rule="all_done", ) # [END howto_operator_weaviate_ingest_xcom_data_without_vectors] # [START howto_operator_weaviate_ingest_callable_data_without_vectors] batch_data_without_vectors_callable_data = WeaviateIngestOperator( task_id="batch_data_without_vectors_callable_data", conn_id="weaviate_default", collection_name="QuestionWithOpenAIVectorizerUsingOperator", input_data=get_data_without_vectors(), trigger_rule="all_done", ) # [END howto_operator_weaviate_ingest_callable_data_without_vectors] create_or_replace_document_objects_without_vectors = WeaviateDocumentIngestOperator( task_id="create_or_replace_document_objects_without_vectors_xcom_data", existing="replace", document_column="docLink", conn_id="weaviate_default", collection_name="QuestionWithOpenAIVectorizerUsingOperatorDocs", input_data=xcom_doc_data_without_vectors["return_value"], trigger_rule="all_done", ) @teardown @task def delete_weaviate_collection_vector(): """ Example task to delete a weaviate collection """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() # collection definition object. Weaviate's autoschema feature will infer properties when importing. weaviate_hook.delete_collections( [ "QuestionWithOpenAIVectorizerUsingOperator", ] ) @teardown @task def delete_weaviate_collection_without_vector(): """ Example task to delete a weaviate collection """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() # collection definition object. Weaviate's autoschema feature will infer properties when importing. weaviate_hook.delete_collections( [ COLLECTION_NAME, ] ) @teardown @task def delete_weaviate_docs_collection_without_vector(): """ Example task to delete a weaviate collection """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() # collection definition object. Weaviate's autoschema feature will infer properties when importing. weaviate_hook.delete_collections(["QuestionWithOpenAIVectorizerUsingOperatorDocs"]) ( create_collection_without_vectorizer() >> [batch_data_with_vectors_xcom_data, batch_data_with_vectors_callable_data] >> delete_weaviate_collection_without_vector() ) ( create_collection_for_doc_data_with_vectorizer() >> [create_or_replace_document_objects_without_vectors] >> delete_weaviate_docs_collection_without_vector() ) ( create_collection_with_vectorizer() >> [ batch_data_without_vectors_xcom_data, batch_data_without_vectors_callable_data, ] >> delete_weaviate_collection_vector() )
example_weaviate_using_operator() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?