Source code for tests.system.weaviate.example_weaviate_cohere

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import pendulum

from airflow.decorators import dag, setup, task, teardown
from airflow.providers.cohere.operators.embedding import CohereEmbeddingOperator
from airflow.providers.weaviate.operators.weaviate import WeaviateIngestOperator

[docs]COLLECTION_NAME = "weaviate_cohere_example_collection"
@dag( schedule=None, start_date=pendulum.datetime(2021, 1, 1, tz="UTC"), catchup=False, tags=["example", "weaviate", "cohere"], )
[docs]def example_weaviate_cohere(): """ Example DAG which creates embeddings using CohereEmbeddingOperator and the uses WeaviateIngestOperator to insert embeddings to Weaviate . """ @setup @task def create_weaviate_collection(): """ Example task to create collection without any Vectorizer. You're expected to provide custom vectors for your data. """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() # Collection definition object. Weaviate's autoschema feature will infer properties when importing. weaviate_hook.create_collection(name=COLLECTION_NAME, vectorizer_config=None) @setup @task def get_data_to_embed(): import json from pathlib import Path data = json.load(Path("jeopardy_data_without_vectors.json").open()) return [[item["Question"]] for item in data] data_to_embed = get_data_to_embed() embed_data = CohereEmbeddingOperator.partial( task_id="embedding_using_xcom_data", ).expand(input_text=data_to_embed["return_value"]) @task def update_vector_data_in_json(**kwargs): import json from pathlib import Path ti = kwargs["ti"] data = json.load(Path("jeopardy_data_without_vectors.json").open()) embedded_data = ti.xcom_pull(task_ids="embedding_using_xcom_data", key="return_value") for i, vector in enumerate(embedded_data): data[i]["Vector"] = vector[0] return data update_vector_data_in_json = update_vector_data_in_json() perform_ingestion = WeaviateIngestOperator( task_id="perform_ingestion", conn_id="weaviate_default", collection_name=COLLECTION_NAME, input_data=update_vector_data_in_json["return_value"], ) embed_query = CohereEmbeddingOperator( task_id="embed_query", input_text=["biology"], ) @teardown @task def delete_weaviate_collections(): """ Example task to delete a weaviate collection """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() # collection definition object. Weaviate's autoschema feature will infer properties when importing. weaviate_hook.delete_collections([COLLECTION_NAME]) ( create_weaviate_collection() >> embed_data >> update_vector_data_in_json >> perform_ingestion >> embed_query >> delete_weaviate_collections() )
example_weaviate_cohere() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?