# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Hook for Pinecone."""
from __future__ import annotations
import itertools
import os
from functools import cached_property
from typing import TYPE_CHECKING, Any
from pinecone import Pinecone, PodSpec, ServerlessSpec
from airflow.hooks.base import BaseHook
if TYPE_CHECKING:
from pinecone import Vector
from pinecone.core.client.model.sparse_values import SparseValues
from pinecone.core.client.models import DescribeIndexStatsResponse, QueryResponse, UpsertResponse
from airflow.models.connection import Connection
[docs]class PineconeHook(BaseHook):
"""
Interact with Pinecone. This hook uses the Pinecone conn_id.
:param conn_id: Optional, default connection id is `pinecone_default`. The connection id to use when
connecting to Pinecone.
"""
[docs] conn_name_attr = "conn_id"
[docs] default_conn_name = "pinecone_default"
@classmethod
@classmethod
[docs] def get_ui_field_behaviour(cls) -> dict[str, Any]:
"""Return custom field behaviour."""
return {
"hidden_fields": ["port", "schema"],
"relabeling": {
"login": "Pinecone Environment",
"host": "Pinecone Host",
"password": "Pinecone API key",
},
}
def __init__(
self, conn_id: str = default_conn_name, environment: str | None = None, region: str | None = None
) -> None:
self.conn_id = conn_id
self._environment = environment
self._region = region
@property
[docs] def api_key(self) -> str:
key = self.conn.password
if not key:
raise LookupError("Pinecone API Key not found in connection")
return key
@cached_property
[docs] def environment(self) -> str:
if self._environment:
return self._environment
env = self.conn.login
if not env:
raise LookupError("Pinecone environment not found in connection")
return env
@cached_property
[docs] def region(self) -> str:
if self._region:
return self._region
region = self.conn.extra_dejson.get("region")
if not region:
raise LookupError("Pinecone region not found in connection")
return region
@cached_property
[docs] def pinecone_client(self) -> Pinecone:
"""Pinecone object to interact with Pinecone."""
pinecone_host = self.conn.host
extras = self.conn.extra_dejson
pinecone_project_id = extras.get("project_id")
enable_curl_debug = extras.get("debug_curl")
if enable_curl_debug:
os.environ["PINECONE_DEBUG_CURL"] = "true"
return Pinecone(
api_key=self.api_key,
host=pinecone_host,
project_id=pinecone_project_id,
source_tag="apache_airflow",
)
@cached_property
[docs] def conn(self) -> Connection:
return self.get_connection(self.conn_id)
[docs] def test_connection(self) -> tuple[bool, str]:
try:
self.pinecone_client.list_indexes()
return True, "Connection established"
except Exception as e:
return False, str(e)
[docs] def list_indexes(self) -> Any:
"""Retrieve a list of all indexes in your project."""
return self.pinecone_client.list_indexes()
[docs] def upsert(
self,
index_name: str,
vectors: list[Vector] | list[tuple] | list[dict],
namespace: str = "",
batch_size: int | None = None,
show_progress: bool = True,
**kwargs: Any,
) -> UpsertResponse:
"""
Write vectors into a namespace.
If a new value is upserted for an existing vector id, it will overwrite the previous value.
.. seealso:: https://docs.pinecone.io/reference/upsert
To upsert in parallel follow
.. seealso:: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel
:param index_name: The name of the index to describe.
:param vectors: A list of vectors to upsert.
:param namespace: The namespace to write to. If not specified, the default namespace - "" is used.
:param batch_size: The number of vectors to upsert in each batch.
:param show_progress: Whether to show a progress bar using tqdm. Applied only
if batch_size is provided.
"""
index = self.pinecone_client.Index(index_name)
return index.upsert(
vectors=vectors,
namespace=namespace,
batch_size=batch_size,
show_progress=show_progress,
**kwargs,
)
[docs] def get_pod_spec_obj(
self,
*,
replicas: int | None = None,
shards: int | None = None,
pods: int | None = None,
pod_type: str | None = "p1.x1",
metadata_config: dict | None = None,
source_collection: str | None = None,
environment: str | None = None,
) -> PodSpec:
"""
Get a PodSpec object.
:param replicas: The number of replicas.
:param shards: The number of shards.
:param pods: The number of pods.
:param pod_type: The type of pod.
:param metadata_config: The metadata configuration.
:param source_collection: The source collection.
:param environment: The environment to use when creating the index.
"""
return PodSpec(
environment=environment or self.environment,
replicas=replicas,
shards=shards,
pods=pods,
pod_type=pod_type,
metadata_config=metadata_config,
source_collection=source_collection,
)
[docs] def get_serverless_spec_obj(self, *, cloud: str, region: str | None = None) -> ServerlessSpec:
"""
Get a ServerlessSpec object.
:param cloud: The cloud provider.
:param region: The region to use when creating the index.
"""
return ServerlessSpec(cloud=cloud, region=region or self.region)
[docs] def create_index(
self,
index_name: str,
dimension: int,
spec: ServerlessSpec | PodSpec,
metric: str | None = "cosine",
timeout: int | None = None,
) -> None:
"""
Create a new index.
:param index_name: The name of the index.
:param dimension: The dimension of the vectors to be indexed.
:param spec: Pass a `ServerlessSpec` object to create a serverless index or a `PodSpec` object to create a pod index.
``get_serverless_spec_obj`` and ``get_pod_spec_obj`` can be used to create the Spec objects.
:param metric: The metric to use. Defaults to cosine.
:param timeout: The timeout to use.
"""
self.pinecone_client.create_index(
name=index_name,
dimension=dimension,
spec=spec,
metric=metric,
timeout=timeout,
)
[docs] def describe_index(self, index_name: str) -> Any:
"""
Retrieve information about a specific index.
:param index_name: The name of the index to describe.
"""
return self.pinecone_client.describe_index(name=index_name)
[docs] def delete_index(self, index_name: str, timeout: int | None = None) -> None:
"""
Delete a specific index.
:param index_name: the name of the index.
:param timeout: Timeout for wait until index gets ready.
"""
self.pinecone_client.delete_index(name=index_name, timeout=timeout)
[docs] def create_collection(self, collection_name: str, index_name: str) -> None:
"""
Create a new collection from a specified index.
:param collection_name: The name of the collection to create.
:param index_name: The name of the source index.
"""
self.pinecone_client.create_collection(name=collection_name, source=index_name)
[docs] def delete_collection(self, collection_name: str) -> None:
"""
Delete a specific collection.
:param collection_name: The name of the collection to delete.
"""
self.pinecone_client.delete_collection(collection_name)
[docs] def describe_collection(self, collection_name: str) -> Any:
"""
Retrieve information about a specific collection.
:param collection_name: The name of the collection to describe.
"""
return self.pinecone_client.describe_collection(collection_name)
[docs] def list_collections(self) -> Any:
"""Retrieve a list of all collections in the current project."""
return self.pinecone_client.list_collections()
[docs] def query_vector(
self,
index_name: str,
vector: list[Any],
query_id: str | None = None,
top_k: int = 10,
namespace: str | None = None,
query_filter: dict[str, str | float | int | bool | list[Any] | dict[Any, Any]] | None = None,
include_values: bool | None = None,
include_metadata: bool | None = None,
sparse_vector: SparseValues | dict[str, list[float] | list[int]] | None = None,
) -> QueryResponse:
"""
Search a namespace using query vector.
It retrieves the ids of the most similar items in a namespace, along with their similarity scores.
API reference: https://docs.pinecone.io/reference/query
:param index_name: The name of the index to query.
:param vector: The query vector.
:param query_id: The unique ID of the vector to be used as a query vector.
:param top_k: The number of results to return.
:param namespace: The namespace to fetch vectors from. If not specified, the default namespace is used.
:param query_filter: The filter to apply. See https://www.pinecone.io/docs/metadata-filtering/
:param include_values: Whether to include the vector values in the result.
:param include_metadata: Indicates whether metadata is included in the response as well as the ids.
:param sparse_vector: sparse values of the query vector. Expected to be either a SparseValues object or a dict
of the form: {'indices': List[int], 'values': List[float]}, where the lists each have the same length.
"""
index = self.pinecone_client.Index(index_name)
return index.query(
vector=vector,
id=query_id,
top_k=top_k,
namespace=namespace,
filter=query_filter,
include_values=include_values,
include_metadata=include_metadata,
sparse_vector=sparse_vector,
)
@staticmethod
def _chunks(iterable: list[Any], batch_size: int = 100) -> Any:
"""Break an iterable into chunks of size batch_size."""
it = iter(iterable)
chunk = tuple(itertools.islice(it, batch_size))
while chunk:
yield chunk
chunk = tuple(itertools.islice(it, batch_size))
[docs] def upsert_data_async(
self,
index_name: str,
data: list[tuple[Any]],
async_req: bool = False,
pool_threads: int | None = None,
) -> None | list[Any]:
"""
Upserts (insert/update) data into the Pinecone index.
:param index_name: Name of the index.
:param data: List of tuples to be upserted. Each tuple is of form (id, vector, metadata).
Metadata is optional.
:param async_req: If True, upsert operations will be asynchronous.
:param pool_threads: Number of threads for parallel upserting. If async_req is True, this must be provided.
"""
responses = []
with self.pinecone_client.Index(index_name, pool_threads=pool_threads) as index:
if async_req and pool_threads:
async_results = [index.upsert(vectors=chunk, async_req=True) for chunk in self._chunks(data)]
responses = [async_result.get() for async_result in async_results]
else:
for chunk in self._chunks(data):
response = index.upsert(vectors=chunk)
responses.append(response)
return responses
[docs] def describe_index_stats(
self,
index_name: str,
stats_filter: dict[str, str | float | int | bool | list[Any] | dict[Any, Any]] | None = None,
**kwargs: Any,
) -> DescribeIndexStatsResponse:
"""
Describe the index statistics.
Returns statistics about the index's contents. For example: The vector count per
namespace and the number of dimensions.
API reference: https://docs.pinecone.io/reference/describe_index_stats_post
:param index_name: Name of the index.
:param stats_filter: If this parameter is present, the operation only returns statistics for vectors that
satisfy the filter. See https://www.pinecone.io/docs/metadata-filtering/
"""
index = self.pinecone_client.Index(index_name)
return index.describe_index_stats(filter=stats_filter, **kwargs)