Source code for airflow.providers.microsoft.azure.operators.data_factory

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from typing import TYPE_CHECKING, Any, Sequence

from airflow.hooks.base import BaseHook
from airflow.models import BaseOperator, BaseOperatorLink, XCom
from airflow.providers.microsoft.azure.hooks.data_factory import (
    AzureDataFactoryHook,
    AzureDataFactoryPipelineRunException,
    AzureDataFactoryPipelineRunStatus,
)

if TYPE_CHECKING:
    from airflow.models.taskinstance import TaskInstanceKey
    from airflow.utils.context import Context





[docs]class AzureDataFactoryRunPipelineOperator(BaseOperator): """ Executes a data factory pipeline. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AzureDataFactoryRunPipelineOperator` :param azure_data_factory_conn_id: The connection identifier for connecting to Azure Data Factory. :param pipeline_name: The name of the pipeline to execute. :param wait_for_termination: Flag to wait on a pipeline run's termination. By default, this feature is enabled but could be disabled to perform an asynchronous wait for a long-running pipeline execution using the ``AzureDataFactoryPipelineRunSensor``. :param resource_group_name: The resource group name. If a value is not passed in to the operator, the ``AzureDataFactoryHook`` will attempt to use the resource group name provided in the corresponding connection. :param factory_name: The data factory name. If a value is not passed in to the operator, the ``AzureDataFactoryHook`` will attempt to use the factory name name provided in the corresponding connection. :param reference_pipeline_run_id: The pipeline run identifier. If this run ID is specified the parameters of the specified run will be used to create a new run. :param is_recovery: Recovery mode flag. If recovery mode is set to `True`, the specified referenced pipeline run and the new run will be grouped under the same ``groupId``. :param start_activity_name: In recovery mode, the rerun will start from this activity. If not specified, all activities will run. :param start_from_failure: In recovery mode, if set to true, the rerun will start from failed activities. The property will be used only if ``start_activity_name`` is not specified. :param parameters: Parameters of the pipeline run. These parameters are referenced in a pipeline via ``@pipeline().parameters.parameterName`` and will be used only if the ``reference_pipeline_run_id`` is not specified. :param timeout: Time in seconds to wait for a pipeline to reach a terminal status for non-asynchronous waits. Used only if ``wait_for_termination`` is True. :param check_interval: Time in seconds to check on a pipeline run's status for non-asynchronous waits. Used only if ``wait_for_termination`` is True. """
[docs] template_fields: Sequence[str] = ( "azure_data_factory_conn_id", "resource_group_name", "factory_name", "pipeline_name", "reference_pipeline_run_id", "parameters",
)
[docs] template_fields_renderers = {"parameters": "json"}
[docs] ui_color = "#0678d4"
def __init__( self, *, pipeline_name: str, azure_data_factory_conn_id: str = AzureDataFactoryHook.default_conn_name, wait_for_termination: bool = True, resource_group_name: str | None = None, factory_name: str | None = None, reference_pipeline_run_id: str | None = None, is_recovery: bool | None = None, start_activity_name: str | None = None, start_from_failure: bool | None = None, parameters: dict[str, Any] | None = None, timeout: int = 60 * 60 * 24 * 7, check_interval: int = 60, **kwargs, ) -> None: super().__init__(**kwargs) self.azure_data_factory_conn_id = azure_data_factory_conn_id self.pipeline_name = pipeline_name self.wait_for_termination = wait_for_termination self.resource_group_name = resource_group_name self.factory_name = factory_name self.reference_pipeline_run_id = reference_pipeline_run_id self.is_recovery = is_recovery self.start_activity_name = start_activity_name self.start_from_failure = start_from_failure self.parameters = parameters self.timeout = timeout self.check_interval = check_interval
[docs] def execute(self, context: Context) -> None: self.hook = AzureDataFactoryHook(azure_data_factory_conn_id=self.azure_data_factory_conn_id) self.log.info("Executing the %s pipeline.", self.pipeline_name) response = self.hook.run_pipeline( pipeline_name=self.pipeline_name, resource_group_name=self.resource_group_name, factory_name=self.factory_name, reference_pipeline_run_id=self.reference_pipeline_run_id, is_recovery=self.is_recovery, start_activity_name=self.start_activity_name, start_from_failure=self.start_from_failure, parameters=self.parameters, ) self.run_id = vars(response)["run_id"] # Push the ``run_id`` value to XCom regardless of what happens during execution. This allows for # retrieval the executed pipeline's ``run_id`` for downstream tasks especially if performing an # asynchronous wait. context["ti"].xcom_push(key="run_id", value=self.run_id) if self.wait_for_termination: self.log.info("Waiting for pipeline run %s to terminate.", self.run_id) if self.hook.wait_for_pipeline_run_status( run_id=self.run_id, expected_statuses=AzureDataFactoryPipelineRunStatus.SUCCEEDED, check_interval=self.check_interval, timeout=self.timeout, resource_group_name=self.resource_group_name, factory_name=self.factory_name, ): self.log.info("Pipeline run %s has completed successfully.", self.run_id) else: raise AzureDataFactoryPipelineRunException( f"Pipeline run {self.run_id} has failed or has been cancelled."
)
[docs] def on_kill(self) -> None: if self.run_id: self.hook.cancel_pipeline_run( run_id=self.run_id, resource_group_name=self.resource_group_name, factory_name=self.factory_name, ) # Check to ensure the pipeline run was cancelled as expected. if self.hook.wait_for_pipeline_run_status( run_id=self.run_id, expected_statuses=AzureDataFactoryPipelineRunStatus.CANCELLED, check_interval=self.check_interval, timeout=self.timeout, resource_group_name=self.resource_group_name, factory_name=self.factory_name, ): self.log.info("Pipeline run %s has been cancelled successfully.", self.run_id) else: raise AzureDataFactoryPipelineRunException(f"Pipeline run {self.run_id} was not cancelled.")

Was this entry helpful?