#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example DAG using PrestoToGCSOperator.
"""
from __future__ import annotations
import os
import re
from datetime import datetime
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.bigquery import (
BigQueryCreateEmptyDatasetOperator,
BigQueryCreateTableOperator,
BigQueryDeleteDatasetOperator,
BigQueryInsertJobOperator,
)
from airflow.providers.google.cloud.transfers.presto_to_gcs import PrestoToGCSOperator
from airflow.utils.trigger_rule import TriggerRule
from system.google import DEFAULT_GCP_SYSTEM_TEST_PROJECT_ID
[docs]
ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]
PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT") or DEFAULT_GCP_SYSTEM_TEST_PROJECT_ID
[docs]
DAG_ID = "presto_to_gcs"
[docs]
DATASET_NAME = f"dataset_{DAG_ID}_{ENV_ID}"
[docs]
BUCKET_NAME = f"bucket_{DAG_ID}_{ENV_ID}"
[docs]
SOURCE_MULTIPLE_TYPES = "memory.default.test_multiple_types"
[docs]
SOURCE_CUSTOMER_TABLE = "tpch.sf1.customer"
[docs]
def safe_name(s: str) -> str:
"""
Remove invalid characters for filename
"""
return re.sub("[^0-9a-zA-Z_]+", "_", s)
with DAG(
dag_id=DAG_ID,
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example", "presto_to_gcs"],
) as dag:
[docs]
create_dataset = BigQueryCreateEmptyDatasetOperator(task_id="create-dataset", dataset_id=DATASET_NAME)
delete_dataset = BigQueryDeleteDatasetOperator(
task_id="delete_dataset",
dataset_id=DATASET_NAME,
delete_contents=True,
trigger_rule=TriggerRule.ALL_DONE,
)
# [START howto_operator_presto_to_gcs_basic]
presto_to_gcs_basic = PrestoToGCSOperator(
task_id="presto_to_gcs_basic",
sql=f"select * from {SOURCE_MULTIPLE_TYPES}",
bucket=BUCKET_NAME,
filename=f"{safe_name(SOURCE_MULTIPLE_TYPES)}.{{}}.json",
)
# [END howto_operator_presto_to_gcs_basic]
# [START howto_operator_presto_to_gcs_multiple_types]
presto_to_gcs_multiple_types = PrestoToGCSOperator(
task_id="presto_to_gcs_multiple_types",
sql=f"select * from {SOURCE_MULTIPLE_TYPES}",
bucket=BUCKET_NAME,
filename=f"{safe_name(SOURCE_MULTIPLE_TYPES)}.{{}}.json",
schema_filename=f"{safe_name(SOURCE_MULTIPLE_TYPES)}-schema.json",
gzip=False,
)
# [END howto_operator_presto_to_gcs_multiple_types]
# [START howto_operator_create_external_table_multiple_types]
create_external_table_multiple_types = BigQueryCreateTableOperator(
task_id="create_external_table_multiple_types",
dataset_id=DATASET_NAME,
table_id=f"{safe_name(SOURCE_MULTIPLE_TYPES)}",
table_resource={
"tableReference": {
"projectId": PROJECT_ID,
"datasetId": DATASET_NAME,
"tableId": f"{safe_name(SOURCE_MULTIPLE_TYPES)}",
},
"schema": {
"fields": [
{"name": "name", "type": "STRING"},
{"name": "post_abbr", "type": "STRING"},
]
},
"externalDataConfiguration": {
"sourceFormat": "NEWLINE_DELIMITED_JSON",
"compression": "NONE",
"csvOptions": {"skipLeadingRows": 1},
"sourceUris": [f"gs://{BUCKET_NAME}/{safe_name(SOURCE_MULTIPLE_TYPES)}.*.json"],
},
},
gcs_schema_object=f"gs://{BUCKET_NAME}/{safe_name(SOURCE_MULTIPLE_TYPES)}-schema.json",
)
# [END howto_operator_create_external_table_multiple_types]
read_data_from_gcs_multiple_types = BigQueryInsertJobOperator(
task_id="read_data_from_gcs_multiple_types",
configuration={
"query": {
"query": f"SELECT COUNT(*) FROM `{PROJECT_ID}.{DATASET_NAME}."
f"{safe_name(SOURCE_MULTIPLE_TYPES)}`",
"useLegacySql": False,
}
},
)
# [START howto_operator_presto_to_gcs_many_chunks]
presto_to_gcs_many_chunks = PrestoToGCSOperator(
task_id="presto_to_gcs_many_chunks",
sql=f"select * from {SOURCE_CUSTOMER_TABLE}",
bucket=BUCKET_NAME,
filename=f"{safe_name(SOURCE_CUSTOMER_TABLE)}.{{}}.json",
schema_filename=f"{safe_name(SOURCE_CUSTOMER_TABLE)}-schema.json",
approx_max_file_size_bytes=10_000_000,
gzip=False,
)
# [END howto_operator_presto_to_gcs_many_chunks]
create_external_table_many_chunks = BigQueryCreateTableOperator(
task_id="create_external_table_many_chunks",
dataset_id=DATASET_NAME,
table_id=f"{safe_name(SOURCE_CUSTOMER_TABLE)}",
table_resource={
"tableReference": {
"projectId": PROJECT_ID,
"datasetId": DATASET_NAME,
"tableId": f"{safe_name(SOURCE_CUSTOMER_TABLE)}",
},
"schema": {
"fields": [
{"name": "name", "type": "STRING"},
{"name": "post_abbr", "type": "STRING"},
]
},
"externalDataConfiguration": {
"sourceFormat": "NEWLINE_DELIMITED_JSON",
"compression": "NONE",
"csvOptions": {"skipLeadingRows": 1},
"sourceUris": [f"gs://{BUCKET_NAME}/{safe_name(SOURCE_CUSTOMER_TABLE)}.*.json"],
},
},
gcs_schema_object=f"gs://{BUCKET_NAME}/{safe_name(SOURCE_CUSTOMER_TABLE)}-schema.json",
)
# [START howto_operator_read_data_from_gcs_many_chunks]
read_data_from_gcs_many_chunks = BigQueryInsertJobOperator(
task_id="read_data_from_gcs_many_chunks",
configuration={
"query": {
"query": f"SELECT COUNT(*) FROM `{PROJECT_ID}.{DATASET_NAME}."
f"{safe_name(SOURCE_CUSTOMER_TABLE)}`",
"useLegacySql": False,
}
},
)
# [END howto_operator_read_data_from_gcs_many_chunks]
# [START howto_operator_presto_to_gcs_csv]
presto_to_gcs_csv = PrestoToGCSOperator(
task_id="presto_to_gcs_csv",
sql=f"select * from {SOURCE_MULTIPLE_TYPES}",
bucket=BUCKET_NAME,
filename=f"{safe_name(SOURCE_MULTIPLE_TYPES)}.{{}}.csv",
schema_filename=f"{safe_name(SOURCE_MULTIPLE_TYPES)}-schema.json",
export_format="csv",
)
# [END howto_operator_presto_to_gcs_csv]
# TEST SETUP
create_dataset >> presto_to_gcs_basic
create_dataset >> presto_to_gcs_multiple_types
create_dataset >> presto_to_gcs_many_chunks
create_dataset >> presto_to_gcs_csv
# TEST BODY
presto_to_gcs_multiple_types >> create_external_table_multiple_types >> read_data_from_gcs_multiple_types
presto_to_gcs_many_chunks >> create_external_table_many_chunks >> read_data_from_gcs_many_chunks
# TEST TEARDOWN
presto_to_gcs_basic >> delete_dataset
presto_to_gcs_csv >> delete_dataset
read_data_from_gcs_multiple_types >> delete_dataset
read_data_from_gcs_many_chunks >> delete_dataset
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]
test_run = get_test_run(dag)