#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Google BigQuery Sensors.
"""
from __future__ import annotations
import os
from datetime import datetime
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.bigquery import (
BigQueryCreateEmptyDatasetOperator,
BigQueryCreateEmptyTableOperator,
BigQueryDeleteDatasetOperator,
BigQueryInsertJobOperator,
)
from airflow.providers.google.cloud.sensors.bigquery import (
BigQueryTableExistenceSensor,
BigQueryTablePartitionExistenceSensor,
)
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]DAG_ID = "bigquery_sensors"
[docs]DATASET_NAME = f"dataset_{DAG_ID}_{ENV_ID}".replace("-", "_")
[docs]TABLE_NAME = f"partitioned_table_{DAG_ID}_{ENV_ID}".replace("-", "_")
[docs]INSERT_DATE = datetime.now().strftime("%Y-%m-%d")
[docs]PARTITION_NAME = "{{ ds_nodash }}"
[docs]INSERT_ROWS_QUERY = f"INSERT {DATASET_NAME}.{TABLE_NAME} VALUES (42, '{{{{ ds }}}}')"
[docs]SCHEMA = [
{"name": "value", "type": "INTEGER", "mode": "REQUIRED"},
{"name": "ds", "type": "DATE", "mode": "NULLABLE"},
]
with DAG(
DAG_ID,
schedule="@once",
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example", "bigquery", "sensors"],
user_defined_macros={"DATASET": DATASET_NAME, "TABLE": TABLE_NAME},
default_args={"project_id": PROJECT_ID},
) as dag:
[docs] create_dataset = BigQueryCreateEmptyDatasetOperator(
task_id="create_dataset", dataset_id=DATASET_NAME, project_id=PROJECT_ID
)
create_table = BigQueryCreateEmptyTableOperator(
task_id="create_table",
dataset_id=DATASET_NAME,
table_id=TABLE_NAME,
schema_fields=SCHEMA,
time_partitioning={
"type": "DAY",
"field": "ds",
},
)
# [START howto_sensor_bigquery_table]
check_table_exists = BigQueryTableExistenceSensor(
task_id="check_table_exists", project_id=PROJECT_ID, dataset_id=DATASET_NAME, table_id=TABLE_NAME
)
# [END howto_sensor_bigquery_table]
# [START howto_sensor_bigquery_table_defered]
check_table_exists_def = BigQueryTableExistenceSensor(
task_id="check_table_exists_def",
project_id=PROJECT_ID,
dataset_id=DATASET_NAME,
table_id=TABLE_NAME,
deferrable=True,
)
# [END howto_sensor_bigquery_table_defered]
# [START howto_sensor_async_bigquery_table]
check_table_exists_async = BigQueryTableExistenceSensor(
task_id="check_table_exists_async",
project_id=PROJECT_ID,
dataset_id=DATASET_NAME,
table_id=TABLE_NAME,
)
# [END howto_sensor_async_bigquery_table]
execute_insert_query = BigQueryInsertJobOperator(
task_id="execute_insert_query",
configuration={
"query": {
"query": INSERT_ROWS_QUERY,
"useLegacySql": False,
}
},
)
# [START howto_sensor_bigquery_table_partition]
check_table_partition_exists = BigQueryTablePartitionExistenceSensor(
task_id="check_table_partition_exists",
project_id=PROJECT_ID,
dataset_id=DATASET_NAME,
table_id=TABLE_NAME,
partition_id=PARTITION_NAME,
)
# [END howto_sensor_bigquery_table_partition]
# [START howto_sensor_bigquery_table_partition_defered]
check_table_partition_exists_def = BigQueryTablePartitionExistenceSensor(
task_id="check_table_partition_exists_def",
project_id=PROJECT_ID,
dataset_id=DATASET_NAME,
table_id=TABLE_NAME,
partition_id=PARTITION_NAME,
deferrable=True,
)
# [END howto_sensor_bigquery_table_partition_defered]
# [START howto_sensor_bigquery_table_partition_async]
check_table_partition_exists_async = BigQueryTablePartitionExistenceSensor(
task_id="check_table_partition_exists_async",
partition_id=PARTITION_NAME,
project_id=PROJECT_ID,
dataset_id=DATASET_NAME,
table_id=TABLE_NAME,
)
# [END howto_sensor_bigquery_table_partition_async]
delete_dataset = BigQueryDeleteDatasetOperator(
task_id="delete_dataset",
dataset_id=DATASET_NAME,
delete_contents=True,
trigger_rule=TriggerRule.ALL_DONE,
)
(
create_dataset
>> create_table
>> [check_table_exists, check_table_exists_async, check_table_exists_def]
>> execute_insert_query
>> [
check_table_partition_exists,
check_table_partition_exists_async,
check_table_partition_exists_def,
]
>> delete_dataset
)
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)