# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Google BigQuery service.
Uses Async version of the Big Query Operators
"""
from __future__ import annotations
import os
from datetime import datetime, timedelta
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.bigquery import (
BigQueryCheckOperator,
BigQueryCreateEmptyDatasetOperator,
BigQueryCreateEmptyTableOperator,
BigQueryDeleteDatasetOperator,
BigQueryGetDataOperator,
BigQueryInsertJobOperator,
BigQueryIntervalCheckOperator,
BigQueryValueCheckOperator,
)
from airflow.providers.standard.operators.bash import BashOperator
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]DAG_ID = "bigquery_queries_async"
[docs]DATASET_NAME = f"dataset_{DAG_ID}_{ENV_ID}".replace("-", "_")
[docs]TABLE_NAME_1 = f"table_{DAG_ID}_{ENV_ID}_1".replace("-", "_")
[docs]TABLE_NAME_2 = f"table_{DAG_ID}_{ENV_ID}_2".replace("-", "_")
[docs]SCHEMA = [
{"name": "value", "type": "INTEGER", "mode": "REQUIRED"},
{"name": "name", "type": "STRING", "mode": "NULLABLE"},
{"name": "ds", "type": "STRING", "mode": "NULLABLE"},
]
[docs]INSERT_DATE = datetime.now().strftime("%Y-%m-%d")
[docs]INSERT_ROWS_QUERY = (
f"INSERT {DATASET_NAME}.{TABLE_NAME_1} VALUES "
f"(42, 'monthy python', '{INSERT_DATE}'), "
f"(42, 'fishy fish', '{INSERT_DATE}');"
)
[docs]CONFIGURATION = {
"query": {
"query": f"""DECLARE success BOOL;
DECLARE size_bytes INT64;
DECLARE row_count INT64;
DECLARE DELAY_TIME DATETIME;
DECLARE WAIT STRING;
SET success = FALSE;
SELECT row_count = (SELECT row_count FROM {DATASET_NAME}.__TABLES__
WHERE table_id='NON_EXISTING_TABLE');
IF row_count > 0 THEN
SELECT 'Table Exists!' as message, retry_count as retries;
SET success = TRUE;
ELSE
SELECT 'Table does not exist' as message, row_count;
SET WAIT = 'TRUE';
SET DELAY_TIME = DATETIME_ADD(CURRENT_DATETIME,INTERVAL 1 MINUTE);
WHILE WAIT = 'TRUE' DO
IF (DELAY_TIME < CURRENT_DATETIME) THEN
SET WAIT = 'FALSE';
END IF;
END WHILE;
END IF;""",
"useLegacySql": False,
}
}
[docs]default_args = {
"execution_timeout": timedelta(hours=6),
"retries": 2,
"retry_delay": timedelta(seconds=60),
}
with DAG(
dag_id=DAG_ID,
schedule="@once",
start_date=datetime(2022, 1, 1),
catchup=False,
default_args=default_args,
tags=["example", "bigquery", "deferrable"],
user_defined_macros={"DATASET": DATASET_NAME, "TABLE": TABLE_NAME_1},
) as dag:
[docs] create_dataset = BigQueryCreateEmptyDatasetOperator(
task_id="create_dataset",
dataset_id=DATASET_NAME,
location=LOCATION,
)
create_table_1 = BigQueryCreateEmptyTableOperator(
task_id="create_table_1",
dataset_id=DATASET_NAME,
table_id=TABLE_NAME_1,
schema_fields=SCHEMA,
location=LOCATION,
)
delete_dataset = BigQueryDeleteDatasetOperator(
task_id="delete_dataset",
dataset_id=DATASET_NAME,
delete_contents=True,
trigger_rule=TriggerRule.ALL_DONE,
)
# [START howto_operator_bigquery_insert_job_async]
insert_query_job = BigQueryInsertJobOperator(
task_id="insert_query_job",
configuration={
"query": {
"query": INSERT_ROWS_QUERY,
"useLegacySql": False,
"priority": "BATCH",
}
},
location=LOCATION,
deferrable=True,
)
# [END howto_operator_bigquery_insert_job_async]
# [START howto_operator_bigquery_select_job_async]
select_query_job = BigQueryInsertJobOperator(
task_id="select_query_job",
configuration={
"query": {
"query": "{% include 'resources/example_bigquery_query.sql' %}",
"useLegacySql": False,
}
},
location=LOCATION,
deferrable=True,
)
# [END howto_operator_bigquery_select_job_async]
# [START howto_operator_bigquery_value_check_async]
check_value = BigQueryValueCheckOperator(
task_id="check_value",
sql=f"SELECT COUNT(*) FROM {DATASET_NAME}.{TABLE_NAME_1}",
pass_value=2,
use_legacy_sql=False,
location=LOCATION,
deferrable=True,
)
# [END howto_operator_bigquery_value_check_async]
# [START howto_operator_bigquery_interval_check_async]
check_interval = BigQueryIntervalCheckOperator(
task_id="check_interval",
table=f"{DATASET_NAME}.{TABLE_NAME_1}",
days_back=1,
metrics_thresholds={"COUNT(*)": 1.5},
use_legacy_sql=False,
location=LOCATION,
deferrable=True,
)
# [END howto_operator_bigquery_interval_check_async]
# [START howto_operator_bigquery_multi_query_async]
bigquery_execute_multi_query = BigQueryInsertJobOperator(
task_id="execute_multi_query",
configuration={
"query": {
"query": [
f"SELECT * FROM {DATASET_NAME}.{TABLE_NAME_2}",
f"SELECT COUNT(*) FROM {DATASET_NAME}.{TABLE_NAME_2}",
],
"useLegacySql": False,
}
},
location=LOCATION,
deferrable=True,
)
# [END howto_operator_bigquery_multi_query_async]
# [START howto_operator_bigquery_get_data_async]
get_data = BigQueryGetDataOperator(
task_id="get_data",
dataset_id=DATASET_NAME,
table_id=TABLE_NAME_1,
use_legacy_sql=False,
max_results=10,
selected_fields="value",
location=LOCATION,
deferrable=True,
)
# [END howto_operator_bigquery_get_data_async]
get_data_result = BashOperator(
task_id="get_data_result",
bash_command=f"echo {get_data.output}",
trigger_rule=TriggerRule.ALL_DONE,
)
# [START howto_operator_bigquery_check_async]
check_count = BigQueryCheckOperator(
task_id="check_count",
sql=f"SELECT COUNT(*) FROM {DATASET_NAME}.{TABLE_NAME_1}",
use_legacy_sql=False,
location=LOCATION,
deferrable=True,
)
# [END howto_operator_bigquery_check_async]
# [START howto_operator_bigquery_execute_query_save_async]
execute_query_save = BigQueryInsertJobOperator(
task_id="execute_query_save",
configuration={
"query": {
"query": f"SELECT * FROM {DATASET_NAME}.{TABLE_NAME_1}",
"useLegacySql": False,
"destinationTable": {
"projectId": PROJECT_ID,
"datasetId": DATASET_NAME,
"tableId": TABLE_NAME_2,
},
}
},
location=LOCATION,
deferrable=True,
)
# [END howto_operator_bigquery_execute_query_save_async]
execute_long_running_query = BigQueryInsertJobOperator(
task_id="execute_long_running_query",
configuration=CONFIGURATION,
location=LOCATION,
deferrable=True,
)
create_dataset >> create_table_1 >> insert_query_job
insert_query_job >> select_query_job >> check_count
insert_query_job >> get_data >> get_data_result
insert_query_job >> execute_query_save >> bigquery_execute_multi_query
insert_query_job >> execute_long_running_query >> check_value >> check_interval
[check_count, check_interval, bigquery_execute_multi_query, get_data_result] >> delete_dataset
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)