Source code for airflow.providers.google.cloud.operators.translate

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""This module contains Google Translate operators."""

from __future__ import annotations

from collections.abc import MutableMapping, MutableSequence, Sequence
from typing import TYPE_CHECKING, cast

from google.api_core.exceptions import GoogleAPICallError
from google.api_core.gapic_v1.method import DEFAULT, _MethodDefault

from airflow.exceptions import AirflowException
from airflow.providers.google.cloud.hooks.translate import CloudTranslateHook, TranslateHook
from airflow.providers.google.cloud.links.translate import (
    TranslateResultByOutputConfigLink,
    TranslateTextBatchLink,
    TranslationDatasetsListLink,
    TranslationModelLink,
    TranslationModelsListLink,
    TranslationNativeDatasetLink,
)
from airflow.providers.google.cloud.operators.cloud_base import GoogleCloudBaseOperator
from airflow.providers.google.common.hooks.base_google import PROVIDE_PROJECT_ID

if TYPE_CHECKING:
    from google.api_core.retry import Retry
    from google.cloud.translate_v3.types import (
        BatchDocumentInputConfig,
        BatchDocumentOutputConfig,
        DatasetInputConfig,
        DocumentInputConfig,
        DocumentOutputConfig,
        InputConfig,
        OutputConfig,
        TranslateTextGlossaryConfig,
        TransliterationConfig,
        automl_translation,
    )

    from airflow.utils.context import Context


[docs]class CloudTranslateTextOperator(GoogleCloudBaseOperator): """ Translate a string or list of strings. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:CloudTranslateTextOperator` See https://cloud.google.com/translate/docs/translating-text Execute method returns str or list. This is a list of dictionaries for each queried value. Each dictionary typically contains three keys (though not all will be present in all cases): * ``detectedSourceLanguage``: The detected language (as an ISO 639-1 language code) of the text. * ``translatedText``: The translation of the text into the target language. * ``input``: The corresponding input value. * ``model``: The model used to translate the text. If only a single value is passed, then only a single dictionary is set as the XCom return value. :param values: String or list of strings to translate. :param target_language: The language to translate results into. This is required by the API. :param format_: (Optional) One of ``text`` or ``html``, to specify if the input text is plain text or HTML. :param source_language: (Optional) The language of the text to be translated. :param model: (Optional) The model used to translate the text, such as ``'base'`` or ``'nmt'``. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with the first account from the list granting this role to the originating account (templated). """ # [START translate_template_fields]
[docs] template_fields: Sequence[str] = ( "values", "target_language", "format_", "source_language", "model", "gcp_conn_id", "impersonation_chain", )
# [END translate_template_fields] def __init__( self, *, values: list[str] | str, target_language: str, format_: str, source_language: str | None, model: str, gcp_conn_id: str = "google_cloud_default", impersonation_chain: str | Sequence[str] | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.values = values self.target_language = target_language self.format_ = format_ self.source_language = source_language self.model = model self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain
[docs] def execute(self, context: Context) -> dict: hook = CloudTranslateHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) try: translation = hook.translate( values=self.values, target_language=self.target_language, format_=self.format_, source_language=self.source_language, model=self.model, ) self.log.debug("Translation %s", translation) return translation except ValueError as e: self.log.error("An error has been thrown from translate method:") self.log.error(e) raise AirflowException(e)
[docs]class TranslateTextOperator(GoogleCloudBaseOperator): """ Translate text content of moderate amount, for larger volumes of text please use the TranslateTextBatchOperator. Wraps the Google cloud Translate Text (Advanced) functionality. See https://cloud.google.com/translate/docs/advanced/translating-text-v3 For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:TranslateTextOperator`. :param project_id: Optional. The ID of the Google Cloud project that the service belongs to. :param location: optional. The ID of the Google Cloud location that the service belongs to. if not specified, 'global' is used. Non-global location is required for requests using AutoML models or custom glossaries. :param contents: Required. The sequence of content strings to be translated. Limited to 1024 items with 30_000 codepoints total recommended. :param mime_type: Optional. The format of the source text, If left blank, the MIME type defaults to "text/html". :param source_language_code: Optional. The ISO-639 language code of the input text if known. If not specified, attempted to recognize automatically. :param target_language_code: Required. The ISO-639 language code to use for translation of the input text. :param model: Optional. The ``model`` type requested for this translation. If not provided, the default Google model (NMT) will be used. The format depends on model type: - AutoML Translation models: ``projects/{project-number-or-id}/locations/{location-id}/models/{model-id}`` - General (built-in) models: ``projects/{project-number-or-id}/locations/{location-id}/models/general/nmt`` - Translation LLM models: ``projects/{project-number-or-id}/locations/{location-id}/models/general/translation-llm`` For global (non-region) requests, use 'global' ``location-id``. :param glossary_config: Optional. Glossary to be applied. :param transliteration_config: Optional. Transliteration to be applied. :param retry: Designation of what errors, if any, should be retried. :param timeout: The timeout for this request. :param metadata: Strings which should be sent along with the request as metadata. :param gcp_conn_id: The connection ID to use connecting to Google Cloud. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """
[docs] template_fields: Sequence[str] = ( "contents", "target_language_code", "mime_type", "source_language_code", "model", "gcp_conn_id", "impersonation_chain", )
def __init__( self, *, contents: Sequence[str], source_language_code: str | None = None, target_language_code: str, mime_type: str | None = None, location: str | None = None, project_id: str = PROVIDE_PROJECT_ID, model: str | None = None, transliteration_config: TransliterationConfig | None = None, glossary_config: TranslateTextGlossaryConfig | None = None, labels: str | None = None, timeout: float | _MethodDefault = DEFAULT, retry: Retry | _MethodDefault | None = DEFAULT, metadata: Sequence[tuple[str, str]] = (), gcp_conn_id: str = "google_cloud_default", impersonation_chain: str | Sequence[str] | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.project_id = project_id self.contents = contents self.source_language_code = source_language_code self.target_language_code = target_language_code self.mime_type = mime_type self.location = location self.labels = labels self.model = model self.transliteration_config = transliteration_config self.glossary_config = glossary_config self.metadate = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain
[docs] def execute(self, context: Context) -> dict: hook = TranslateHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) try: self.log.info("Starting the text translation run") translation_result = hook.translate_text( contents=self.contents, source_language_code=self.source_language_code, target_language_code=self.target_language_code, mime_type=self.mime_type, location=self.location, labels=self.labels, model=self.model, transliteration_config=self.transliteration_config, glossary_config=self.glossary_config, timeout=self.timeout, retry=self.retry, metadata=self.metadate, ) self.log.info("Text translation run complete") return translation_result except GoogleAPICallError as e: self.log.error("An error occurred executing translate_text method: \n%s", e) raise AirflowException(e)
[docs]class TranslateTextBatchOperator(GoogleCloudBaseOperator): """ Translate large volumes of text content, by the inputs provided. Wraps the Google cloud Translate Text (Advanced) functionality. See https://cloud.google.com/translate/docs/advanced/batch-translation For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:TranslateTextBatchOperator`. :param project_id: Optional. The ID of the Google Cloud project that the service belongs to. If not specified the hook project_id will be used. :param location: required. The ID of the Google Cloud location, (non-global) that the service belongs to. :param source_language_code: Required. Source language code. :param target_language_codes: Required. Up to 10 language codes allowed here. :param input_configs: Required. Input configurations. The total number of files matched should be <=100. The total content size should be <= 100M Unicode codepoints. The files must use UTF-8 encoding. :param models: Optional. The models to use for translation. Map's key is target language code. Map's value is model name. Value can be a built-in general model, or an AutoML Translation model. The value format depends on model type: - AutoML Translation models: ``projects/{project-number-or-id}/locations/{location-id}/models/{model-id}`` - General (built-in) models: ``projects/{project-number-or-id}/locations/{location-id}/models/general/nmt`` If the map is empty or a specific model is not requested for a language pair, then the default Google model (NMT) is used. :param output_config: Required. Output configuration. :param glossaries: Optional. Glossaries to be applied for translation. It's keyed by target language code. :param labels: Optional. The labels with user-defined metadata. See https://cloud.google.com/translate/docs/advanced/labels for more information. :param retry: Designation of what errors, if any, should be retried. :param timeout: The timeout for this request. :param metadata: Strings which should be sent along with the request as metadata. :param gcp_conn_id: The connection ID to use connecting to Google Cloud. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """
[docs] template_fields: Sequence[str] = ( "input_configs", "target_language_codes", "source_language_code", "models", "glossaries", "gcp_conn_id", "impersonation_chain", )
def __init__( self, *, project_id: str = PROVIDE_PROJECT_ID, location: str, target_language_codes: MutableSequence[str], source_language_code: str, input_configs: MutableSequence[InputConfig | dict], output_config: OutputConfig | dict, models: str | None = None, glossaries: MutableMapping[str, TranslateTextGlossaryConfig] | None = None, labels: MutableMapping[str, str] | None = None, metadata: Sequence[tuple[str, str]] = (), timeout: float | _MethodDefault = DEFAULT, retry: Retry | _MethodDefault | None = DEFAULT, gcp_conn_id: str = "google_cloud_default", impersonation_chain: str | Sequence[str] | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.project_id = project_id self.location = location self.target_language_codes = target_language_codes self.source_language_code = source_language_code self.input_configs = input_configs self.output_config = output_config self.models = models self.glossaries = glossaries self.labels = labels self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain
[docs] def execute(self, context: Context) -> dict: hook = TranslateHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) translate_operation = hook.batch_translate_text( project_id=self.project_id, location=self.location, target_language_codes=self.target_language_codes, source_language_code=self.source_language_code, input_configs=self.input_configs, output_config=self.output_config, models=self.models, glossaries=self.glossaries, labels=self.labels, metadata=self.metadata, timeout=self.timeout, retry=self.retry, ) self.log.info("Translate text batch job started.") TranslateTextBatchLink.persist( context=context, task_instance=self, project_id=self.project_id or hook.project_id, output_config=self.output_config, ) hook.wait_for_operation_result(translate_operation) self.log.info("Translate text batch job finished") return {"batch_text_translate_results": self.output_config["gcs_destination"]}
[docs]class TranslateCreateDatasetOperator(GoogleCloudBaseOperator): """ Create a Google Cloud Translate dataset. Creates a `native` translation dataset, using API V3. For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:TranslateCreateDatasetOperator`. :param dataset: The dataset to create. If a dict is provided, it must correspond to the automl_translation.Dataset type. :param project_id: ID of the Google Cloud project where dataset is located. If not provided default project_id is used. :param location: The location of the project. :param retry: Designation of what errors, if any, should be retried. :param timeout: The timeout for this request. :param metadata: Strings which should be sent along with the request as metadata. :param gcp_conn_id: The connection ID to use connecting to Google Cloud. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """
[docs] template_fields: Sequence[str] = ( "dataset", "location", "project_id", "gcp_conn_id", "impersonation_chain", )
def __init__( self, *, project_id: str = PROVIDE_PROJECT_ID, location: str, dataset: dict | automl_translation.Dataset, metadata: Sequence[tuple[str, str]] = (), timeout: float | _MethodDefault = DEFAULT, retry: Retry | _MethodDefault | None = DEFAULT, gcp_conn_id: str = "google_cloud_default", impersonation_chain: str | Sequence[str] | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.project_id = project_id self.location = location self.dataset = dataset self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain
[docs] def execute(self, context: Context) -> str: hook = TranslateHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) self.log.info("Dataset creation started %s...", self.dataset) result_operation = hook.create_dataset( dataset=self.dataset, location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) result = hook.wait_for_operation_result(result_operation) result = type(result).to_dict(result) dataset_id = hook.extract_object_id(result) self.xcom_push(context, key="dataset_id", value=dataset_id) self.log.info("Dataset creation complete. The dataset_id: %s.", dataset_id) project_id = self.project_id or hook.project_id TranslationNativeDatasetLink.persist( context=context, task_instance=self, dataset_id=dataset_id, project_id=project_id, ) return result
[docs]class TranslateDatasetsListOperator(GoogleCloudBaseOperator): """ Get a list of native Google Cloud Translation datasets in a project. Get project's list of `native` translation datasets, using API V3. For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:TranslateDatasetsListOperator`. :param project_id: ID of the Google Cloud project where dataset is located. If not provided default project_id is used. :param location: The location of the project. :param retry: Designation of what errors, if any, should be retried. :param timeout: The timeout for this request. :param metadata: Strings which should be sent along with the request as metadata. :param gcp_conn_id: The connection ID to use connecting to Google Cloud. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """
[docs] template_fields: Sequence[str] = ( "location", "project_id", "gcp_conn_id", "impersonation_chain", )
def __init__( self, *, project_id: str = PROVIDE_PROJECT_ID, location: str, metadata: Sequence[tuple[str, str]] = (), timeout: float | _MethodDefault = DEFAULT, retry: Retry | _MethodDefault = DEFAULT, gcp_conn_id: str = "google_cloud_default", impersonation_chain: str | Sequence[str] | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.project_id = project_id self.location = location self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain
[docs] def execute(self, context: Context): hook = TranslateHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) project_id = self.project_id or hook.project_id TranslationDatasetsListLink.persist( context=context, task_instance=self, project_id=project_id, ) self.log.info("Requesting datasets list") results_pager = hook.list_datasets( location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) result_ids = [] for ds_item in results_pager: ds_data = type(ds_item).to_dict(ds_item) ds_id = hook.extract_object_id(ds_data) result_ids.append(ds_id) self.log.info("Fetching the datasets list complete.") return result_ids
[docs]class TranslateImportDataOperator(GoogleCloudBaseOperator): """ Import data to the translation dataset. Loads data to the translation dataset, using API V3. For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:TranslateImportDataOperator`. :param dataset_id: The dataset_id of target native dataset to import data to. :param input_config: The desired input location of translations language pairs file. If a dict provided, must follow the structure of DatasetInputConfig. If a dict is provided, it must be of the same form as the protobuf message InputConfig. :param project_id: ID of the Google Cloud project where dataset is located. If not provided default project_id is used. :param location: The location of the project. :param retry: Designation of what errors, if any, should be retried. :param timeout: The timeout for this request. :param metadata: Strings which should be sent along with the request as metadata. :param gcp_conn_id: The connection ID to use connecting to Google Cloud. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """
[docs] template_fields: Sequence[str] = ( "dataset_id", "input_config", "location", "project_id", "gcp_conn_id", "impersonation_chain", )
def __init__( self, *, dataset_id: str, location: str, input_config: dict | DatasetInputConfig, project_id: str = PROVIDE_PROJECT_ID, metadata: Sequence[tuple[str, str]] = (), timeout: float | None = None, retry: Retry | _MethodDefault = DEFAULT, gcp_conn_id: str = "google_cloud_default", impersonation_chain: str | Sequence[str] | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.dataset_id = dataset_id self.input_config = input_config self.project_id = project_id self.location = location self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain
[docs] def execute(self, context: Context): hook = TranslateHook(gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain) self.log.info("Importing data to dataset...") operation = hook.import_dataset_data( dataset_id=self.dataset_id, input_config=self.input_config, location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) project_id = self.project_id or hook.project_id TranslationNativeDatasetLink.persist( context=context, task_instance=self, dataset_id=self.dataset_id, project_id=project_id, ) hook.wait_for_operation_done(operation=operation, timeout=self.timeout) self.log.info("Importing data finished!")
[docs]class TranslateDeleteDatasetOperator(GoogleCloudBaseOperator): """ Delete translation dataset and all of its contents. Deletes the translation dataset and it's data, using API V3. For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:TranslateDeleteDatasetOperator`. :param dataset_id: The dataset_id of target native dataset to be deleted. :param location: The location of the project. :param retry: Designation of what errors, if any, should be retried. :param timeout: The timeout for this request. :param metadata: Strings which should be sent along with the request as metadata. :param gcp_conn_id: The connection ID to use connecting to Google Cloud. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """
[docs] template_fields: Sequence[str] = ( "dataset_id", "location", "project_id", "gcp_conn_id", "impersonation_chain", )
def __init__( self, *, dataset_id: str, location: str, project_id: str = PROVIDE_PROJECT_ID, metadata: Sequence[tuple[str, str]] = (), timeout: float | None = None, retry: Retry | _MethodDefault = DEFAULT, gcp_conn_id: str = "google_cloud_default", impersonation_chain: str | Sequence[str] | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.dataset_id = dataset_id self.project_id = project_id self.location = location self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain
[docs] def execute(self, context: Context): hook = TranslateHook(gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain) self.log.info("Deleting the dataset %s...", self.dataset_id) operation = hook.delete_dataset( dataset_id=self.dataset_id, location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) hook.wait_for_operation_done(operation=operation, timeout=self.timeout) self.log.info("Dataset deletion complete!")
[docs]class TranslateCreateModelOperator(GoogleCloudBaseOperator): """ Creates a Google Cloud Translate model. Creates a `native` translation model, using API V3. For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:TranslateCreateModelOperator`. :param dataset_id: The dataset id used for model training. :param project_id: ID of the Google Cloud project where dataset is located. If not provided default project_id is used. :param location: The location of the project. :param retry: Designation of what errors, if any, should be retried. :param timeout: The timeout for this request. :param metadata: Strings which should be sent along with the request as metadata. :param gcp_conn_id: The connection ID to use connecting to Google Cloud. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """
[docs] template_fields: Sequence[str] = ( "dataset_id", "location", "project_id", "gcp_conn_id", "impersonation_chain", )
def __init__( self, *, project_id: str = PROVIDE_PROJECT_ID, location: str, dataset_id: str, display_name: str, timeout: float | None = None, retry: Retry | _MethodDefault = DEFAULT, gcp_conn_id: str = "google_cloud_default", metadata: Sequence[tuple[str, str]] = (), impersonation_chain: str | Sequence[str] | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.project_id = project_id self.location = location self.dataset_id = dataset_id self.display_name = display_name self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain
[docs] def execute(self, context: Context) -> str: hook = TranslateHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) self.log.info("Model creation started, dataset_id %s...", self.dataset_id) try: result_operation = hook.create_model( dataset_id=self.dataset_id, display_name=self.display_name, location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) except GoogleAPICallError as e: self.log.error("Error submitting create_model operation ") raise AirflowException(e) self.log.info("Training has started") hook.wait_for_operation_done(operation=result_operation) result = hook.wait_for_operation_result(operation=result_operation) result = type(result).to_dict(result) model_id = hook.extract_object_id(result) self.xcom_push(context, key="model_id", value=model_id) self.log.info("Model creation complete. The model_id: %s.", model_id) project_id = self.project_id or hook.project_id TranslationModelLink.persist( context=context, task_instance=self, dataset_id=self.dataset_id, model_id=model_id, project_id=project_id, ) return result
[docs]class TranslateModelsListOperator(GoogleCloudBaseOperator): """ Get a list of native Google Cloud Translation models in a project. Get project's list of `native` translation models, using API V3. For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:TranslateModelsListOperator`. :param project_id: ID of the Google Cloud project where dataset is located. If not provided default project_id is used. :param location: The location of the project. :param retry: Designation of what errors, if any, should be retried. :param timeout: The timeout for this request. :param metadata: Strings which should be sent along with the request as metadata. :param gcp_conn_id: The connection ID to use connecting to Google Cloud. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """
[docs] template_fields: Sequence[str] = ( "location", "project_id", "gcp_conn_id", "impersonation_chain", )
def __init__( self, *, project_id: str = PROVIDE_PROJECT_ID, location: str, metadata: Sequence[tuple[str, str]] = (), timeout: float | _MethodDefault = DEFAULT, retry: Retry | _MethodDefault = DEFAULT, gcp_conn_id: str = "google_cloud_default", impersonation_chain: str | Sequence[str] | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.project_id = project_id self.location = location self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain
[docs] def execute(self, context: Context): hook = TranslateHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) project_id = self.project_id or hook.project_id TranslationModelsListLink.persist( context=context, task_instance=self, project_id=project_id, ) self.log.info("Requesting models list") results_pager = hook.list_models( location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) result_ids = [] for model_item in results_pager: model_data = type(model_item).to_dict(model_item) model_id = hook.extract_object_id(model_data) result_ids.append(model_id) self.log.info("Fetching the models list complete. Model id-s: %s", result_ids) return result_ids
[docs]class TranslateDeleteModelOperator(GoogleCloudBaseOperator): """ Delete translation model and all of its contents. Deletes the translation model and it's data, using API V3. For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:TranslateDeleteModelOperator`. :param model_id: The model_id of target native model to be deleted. :param location: The location of the project. :param retry: Designation of what errors, if any, should be retried. :param timeout: The timeout for this request. :param metadata: Strings which should be sent along with the request as metadata. :param gcp_conn_id: The connection ID to use connecting to Google Cloud. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """
[docs] template_fields: Sequence[str] = ( "model_id", "location", "project_id", "gcp_conn_id", "impersonation_chain", )
def __init__( self, *, model_id: str, location: str, project_id: str = PROVIDE_PROJECT_ID, metadata: Sequence[tuple[str, str]] = (), timeout: float | None = None, retry: Retry | _MethodDefault = DEFAULT, gcp_conn_id: str = "google_cloud_default", impersonation_chain: str | Sequence[str] | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.model_id = model_id self.project_id = project_id self.location = location self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain
[docs] def execute(self, context: Context): hook = TranslateHook(gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain) self.log.info("Deleting the model %s...", self.model_id) operation = hook.delete_model( model_id=self.model_id, location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) hook.wait_for_operation_done(operation=operation, timeout=self.timeout) self.log.info("Model deletion complete!")
[docs]class TranslateDocumentOperator(GoogleCloudBaseOperator): """ Translate document provided. Wraps the Google cloud Translate Text (Advanced) functionality. Supports wide range of input/output file types, please visit the https://cloud.google.com/translate/docs/advanced/translate-documents for more details. For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:TranslateDocumentOperator`. :param project_id: Optional. The ID of the Google Cloud project that the service belongs to. If not specified the hook project_id will be used. :param source_language_code: Optional. The ISO-639 language code of the input document text if known. If the source language isn't specified, the API attempts to identify the source language automatically and returns the source language within the response. :param target_language_code: Required. The ISO-639 language code to use for translation of the input document text. :param location: Optional. Project or location to make a call. Must refer to a caller's project. If not specified, 'global' is used. Non-global location is required for requests using AutoML models or custom glossaries. Models and glossaries must be within the same region (have the same location-id). :param document_input_config: A document translation request input config. :param document_output_config: Optional. A document translation request output config. If not provided the translated file will only be returned through a byte-stream and its output mime type will be the same as the input file's mime type. :param customized_attribution: Optional. This flag is to support user customized attribution. If not provided, the default is ``Machine Translated by Google``. Customized attribution should follow rules in https://cloud.google.com/translate/attribution#attribution_and_logos :param is_translate_native_pdf_only: Optional. Param for external customers. If true, the page limit of online native PDF translation is 300 and only native PDF pages will be translated. :param enable_shadow_removal_native_pdf: Optional. If true, use the text removal server to remove the shadow text on background image for native PDF translation. Shadow removal feature can only be enabled when both ``is_translate_native_pdf_only``, ``pdf_native_only`` are False. :param enable_rotation_correction: Optional. If true, enable auto rotation correction in DVS. :param model: Optional. The ``model`` type requested for this translation. If not provided, the default Google model (NMT) will be used. The format depends on model type: - AutoML Translation models: ``projects/{project-number-or-id}/locations/{location-id}/models/{model-id}`` - General (built-in) models: ``projects/{project-number-or-id}/locations/{location-id}/models/general/nmt`` If not provided, the default Google model (NMT) will be used for translation. :param glossary_config: Optional. Glossary to be applied. :param transliteration_config: Optional. Transliteration to be applied. :param retry: Designation of what errors, if any, should be retried. :param timeout: The timeout for this request. :param metadata: Strings which should be sent along with the request as metadata. :param gcp_conn_id: The connection ID to use connecting to Google Cloud. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """
[docs] template_fields: Sequence[str] = ( "source_language_code", "target_language_code", "document_input_config", "document_output_config", "model", "gcp_conn_id", "impersonation_chain", )
def __init__( self, *, location: str | None = None, project_id: str = PROVIDE_PROJECT_ID, source_language_code: str | None = None, target_language_code: str, document_input_config: DocumentInputConfig | dict, document_output_config: DocumentOutputConfig | dict | None, customized_attribution: str | None = None, is_translate_native_pdf_only: bool = False, enable_shadow_removal_native_pdf: bool = False, enable_rotation_correction: bool = False, model: str | None = None, glossary_config: TranslateTextGlossaryConfig | None = None, labels: str | None = None, timeout: float | _MethodDefault = DEFAULT, retry: Retry | _MethodDefault | None = DEFAULT, metadata: Sequence[tuple[str, str]] = (), gcp_conn_id: str = "google_cloud_default", impersonation_chain: str | Sequence[str] | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.project_id = project_id self.source_language_code = source_language_code self.target_language_code = target_language_code self.document_input_config = document_input_config self.document_output_config = document_output_config self.customized_attribution = customized_attribution self.is_translate_native_pdf_only = is_translate_native_pdf_only self.enable_shadow_removal_native_pdf = enable_shadow_removal_native_pdf self.enable_rotation_correction = enable_rotation_correction self.location = location self.labels = labels self.model = model self.glossary_config = glossary_config self.metadate = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain
[docs] def execute(self, context: Context) -> dict: hook = TranslateHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) try: self.log.info("Starting the document translation") doc_translation_result = hook.translate_document( source_language_code=self.source_language_code, target_language_code=self.target_language_code, document_input_config=self.document_input_config, document_output_config=self.document_output_config, customized_attribution=self.customized_attribution, is_translate_native_pdf_only=self.is_translate_native_pdf_only, enable_shadow_removal_native_pdf=self.enable_shadow_removal_native_pdf, enable_rotation_correction=self.enable_rotation_correction, location=self.location, labels=self.labels, model=self.model, glossary_config=self.glossary_config, timeout=self.timeout, retry=self.retry, metadata=self.metadate, ) self.log.info("Document translation completed") except GoogleAPICallError as e: self.log.error("An error occurred executing translate_document method: \n%s", e) raise AirflowException(e) if self.document_output_config: TranslateResultByOutputConfigLink.persist( context=context, task_instance=self, project_id=self.project_id or hook.project_id, output_config=self.document_output_config, ) return cast(dict, type(doc_translation_result).to_dict(doc_translation_result))
[docs]class TranslateDocumentBatchOperator(GoogleCloudBaseOperator): """ Translate documents provided via input and output configurations. Up to 10 target languages per operation supported. Wraps the Google cloud Translate Text (Advanced) functionality. See https://cloud.google.com/translate/docs/advanced/batch-translation. For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:TranslateDocumentBatchOperator`. :param project_id: Required. The ID of the Google Cloud project that the service belongs to. :param source_language_code: Optional. The ISO-639 language code of the input text if known. If the source language isn't specified, the API attempts to identify the source language automatically and returns the source language within the response. :param target_language_codes: Required. The ISO-639 language code to use for translation of the input document. Specify up to 10 language codes here. :param location: Optional. Project or location to make a call. Must refer to a caller's project. If not specified, 'global' is used. Non-global location is required for requests using AutoML models or custom glossaries. Models and glossaries must be within the same region (have the same location-id). :param input_configs: Input configurations. The total number of files matched should be <= 100. The total content size to translate should be <= 100M Unicode codepoints. The files must use UTF-8 encoding. :param output_config: Output configuration. If 2 input configs match to the same file (that is, same input path), no output for duplicate inputs will be generated. :param format_conversions: Optional. The file format conversion map that is applied to all input files. The map key is the original mime_type. The map value is the target mime_type of translated documents. Supported file format conversion includes: - ``application/pdf`` to ``application/vnd.openxmlformats-officedocument.wordprocessingml.document`` If nothing specified, output files will be in the same format as the original file. :param customized_attribution: Optional. This flag is to support user customized attribution. If not provided, the default is ``Machine Translated by Google``. Customized attribution should follow rules in https://cloud.google.com/translate/attribution#attribution_and_logos :param enable_shadow_removal_native_pdf: Optional. If true, use the text removal server to remove the shadow text on background image for native PDF translation. Shadow removal feature can only be enabled when both ``is_translate_native_pdf_only``, ``pdf_native_only`` are False. :param enable_rotation_correction: Optional. If true, enable auto rotation correction in DVS. :param models: Optional. The models to use for translation. Map's key is target language code. Map's value is the model name. Value can be a built-in general model, or an AutoML Translation model. The value format depends on model type: - AutoML Translation models: ``projects/{project-number-or-id}/locations/{location-id}/models/{model-id}`` - General (built-in) models: ``projects/{project-number-or-id}/locations/{location-id}/models/general/nmt``, If the map is empty or a specific model is not requested for a language pair, then default google model (NMT) is used. :param glossaries: Glossaries to be applied. It's keyed by target language code. :param retry: Designation of what errors, if any, should be retried. :param timeout: The timeout for this request. :param metadata: Strings which should be sent along with the request as metadata. :param gcp_conn_id: The connection ID to use connecting to Google Cloud. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """
[docs] template_fields: Sequence[str] = ( "input_configs", "output_config", "target_language_codes", "source_language_code", "models", "glossaries", "gcp_conn_id", "impersonation_chain", )
def __init__( self, *, project_id: str = PROVIDE_PROJECT_ID, source_language_code: str, target_language_codes: MutableSequence[str] | None = None, location: str | None = None, input_configs: MutableSequence[BatchDocumentInputConfig | dict], output_config: BatchDocumentOutputConfig | dict, customized_attribution: str | None = None, format_conversions: MutableMapping[str, str] | None = None, enable_shadow_removal_native_pdf: bool = False, enable_rotation_correction: bool = False, models: MutableMapping[str, str] | None = None, glossaries: MutableMapping[str, TranslateTextGlossaryConfig] | None = None, metadata: Sequence[tuple[str, str]] = (), timeout: float | _MethodDefault = DEFAULT, retry: Retry | _MethodDefault | None = DEFAULT, gcp_conn_id: str = "google_cloud_default", impersonation_chain: str | Sequence[str] | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.project_id = project_id self.location = location self.target_language_codes = target_language_codes self.source_language_code = source_language_code self.input_configs = input_configs self.output_config = output_config self.customized_attribution = customized_attribution self.format_conversions = format_conversions self.enable_shadow_removal_native_pdf = enable_shadow_removal_native_pdf self.enable_rotation_correction = enable_rotation_correction self.models = models self.glossaries = glossaries self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain
[docs] def execute(self, context: Context) -> dict: hook = TranslateHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) try: batch_document_translate_operation = hook.batch_translate_document( project_id=self.project_id, location=self.location, target_language_codes=self.target_language_codes, source_language_code=self.source_language_code, input_configs=self.input_configs, output_config=self.output_config, customized_attribution=self.customized_attribution, format_conversions=self.format_conversions, enable_shadow_removal_native_pdf=self.enable_shadow_removal_native_pdf, enable_rotation_correction=self.enable_rotation_correction, models=self.models, glossaries=self.glossaries, metadata=self.metadata, timeout=self.timeout, retry=self.retry, ) except GoogleAPICallError as e: self.log.error("An error occurred executing batch_translate_document method: \n%s", e) raise AirflowException(e) self.log.info("Batch document translation job started.") TranslateResultByOutputConfigLink.persist( context=context, task_instance=self, project_id=self.project_id or hook.project_id, output_config=self.output_config, ) result = hook.wait_for_operation_result(batch_document_translate_operation) self.log.info("Batch document translation job finished") return cast(dict, type(result).to_dict(result))

Was this entry helpful?