Source code for airflow.providers.google.cloud.sensors.dataproc
## Licensed to the Apache Software Foundation (ASF) under one# or more contributor license agreements. See the NOTICE file# distributed with this work for additional information# regarding copyright ownership. The ASF licenses this file# to you under the Apache License, Version 2.0 (the# "License"); you may not use this file except in compliance# with the License. You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing,# software distributed under the License is distributed on an# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY# KIND, either express or implied. See the License for the# specific language governing permissions and limitations# under the License."""This module contains a Dataproc Job sensor."""from__future__importannotationsimporttimefromtypingimportTYPE_CHECKING,Sequencefromgoogle.api_core.exceptionsimportServerErrorfromgoogle.cloud.dataproc_v1.typesimportBatch,JobStatusfromairflow.exceptionsimportAirflowException,AirflowSkipExceptionfromairflow.providers.google.cloud.hooks.dataprocimportDataprocHookfromairflow.sensors.baseimportBaseSensorOperatorifTYPE_CHECKING:fromairflow.utils.contextimportContext
[docs]classDataprocJobSensor(BaseSensorOperator):""" Check for the state of a previously submitted Dataproc job. :param dataproc_job_id: The Dataproc job ID to poll. (templated) :param region: Required. The Cloud Dataproc region in which to handle the request. (templated) :param project_id: The ID of the google cloud project in which to create the cluster. (templated) :param gcp_conn_id: The connection ID to use connecting to Google Cloud Platform. :param wait_timeout: How many seconds wait for job to be ready. """
[docs]defpoke(self,context:Context)->bool:hook=DataprocHook(gcp_conn_id=self.gcp_conn_id)ifself.wait_timeout:try:job=hook.get_job(job_id=self.dataproc_job_id,region=self.region,project_id=self.project_id)exceptServerErroraserr:duration=self._duration()self.log.info("DURATION RUN: %f",duration)ifduration>self.wait_timeout:# TODO: remove this if check when min_airflow_version is set to higher than 2.7.1message=(f"Timeout: dataproc job {self.dataproc_job_id} "f"is not ready after {self.wait_timeout}s")ifself.soft_fail:raiseAirflowSkipException(message)raiseAirflowException(message)self.log.info("Retrying. Dataproc API returned server error when waiting for job: %s",err)returnFalseelse:job=hook.get_job(job_id=self.dataproc_job_id,region=self.region,project_id=self.project_id)state=job.status.stateifstate==JobStatus.State.ERROR:# TODO: remove this if check when min_airflow_version is set to higher than 2.7.1message=f"Job failed:\n{job}"ifself.soft_fail:raiseAirflowSkipException(message)raiseAirflowException(message)elifstatein{JobStatus.State.CANCELLED,JobStatus.State.CANCEL_PENDING,JobStatus.State.CANCEL_STARTED,}:# TODO: remove this if check when min_airflow_version is set to higher than 2.7.1message=f"Job was cancelled:\n{job}"ifself.soft_fail:raiseAirflowSkipException(message)raiseAirflowException(message)elifJobStatus.State.DONE==state:self.log.debug("Job %s completed successfully.",self.dataproc_job_id)returnTrueelifJobStatus.State.ATTEMPT_FAILURE==state:self.log.debug("Job %s attempt has failed.",self.dataproc_job_id)self.log.info("Waiting for job %s to complete.",self.dataproc_job_id)returnFalse
[docs]classDataprocBatchSensor(BaseSensorOperator):""" Check for the state of batch. :param batch_id: The Dataproc batch ID to poll. (templated) :param region: Required. The Cloud Dataproc region in which to handle the request. (templated) :param project_id: The ID of the google cloud project in which to create the cluster. (templated) :param gcp_conn_id: The connection ID to use connecting to Google Cloud Platform. :param wait_timeout: How many seconds wait for job to be ready. """
[docs]defpoke(self,context:Context)->bool:hook=DataprocHook(gcp_conn_id=self.gcp_conn_id)ifself.wait_timeout:try:batch=hook.get_batch(batch_id=self.batch_id,region=self.region,project_id=self.project_id)exceptServerErroraserr:duration=self._duration()self.log.info("DURATION RUN: %f",duration)ifduration>self.wait_timeout:raiseAirflowException(f"Timeout: dataproc batch {self.batch_id} is not ready after {self.wait_timeout}s")self.log.info("Retrying. Dataproc API returned server error when waiting for batch: %s",err)returnFalseelse:batch=hook.get_batch(batch_id=self.batch_id,region=self.region,project_id=self.project_id)state=batch.stateifstate==Batch.State.FAILED:# TODO: remove this if check when min_airflow_version is set to higher than 2.7.1message="Batch failed"ifself.soft_fail:raiseAirflowSkipException(message)raiseAirflowException(message)elifstatein{Batch.State.CANCELLED,Batch.State.CANCELLING,}:# TODO: remove this if check when min_airflow_version is set to higher than 2.7.1message="Batch was cancelled."ifself.soft_fail:raiseAirflowSkipException(message)raiseAirflowException(message)elifstate==Batch.State.SUCCEEDED:self.log.debug("Batch %s completed successfully.",self.batch_id)returnTrueself.log.info("Waiting for the batch %s to complete.",self.batch_id)returnFalse