Source code for airflow.providers.cncf.kubernetes.operators.spark_kubernetes

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import re
from functools import cached_property
from typing import TYPE_CHECKING, Any

from kubernetes.client import CoreV1Api, CustomObjectsApi, models as k8s

from airflow.exceptions import AirflowException
from airflow.providers.cncf.kubernetes import pod_generator
from airflow.providers.cncf.kubernetes.hooks.kubernetes import KubernetesHook, _load_body_to_dict
from airflow.providers.cncf.kubernetes.operators.custom_object_launcher import CustomObjectLauncher
from airflow.providers.cncf.kubernetes.operators.pod import KubernetesPodOperator
from airflow.providers.cncf.kubernetes.pod_generator import MAX_LABEL_LEN, PodGenerator
from airflow.providers.cncf.kubernetes.utils.pod_manager import PodManager
from airflow.utils.helpers import prune_dict

if TYPE_CHECKING:
    import jinja2

    from airflow.utils.context import Context


[docs]class SparkKubernetesOperator(KubernetesPodOperator): """ Creates sparkApplication object in kubernetes cluster. .. seealso:: For more detail about Spark Application Object have a look at the reference: https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/v1beta2-1.3.3-3.1.1/docs/api-docs.md#sparkapplication :param application_file: filepath to kubernetes custom_resource_definition of sparkApplication :param kubernetes_conn_id: the connection to Kubernetes cluster :param image: Docker image you wish to launch. Defaults to hub.docker.com, :param code_path: path to the spark code in image, :param namespace: kubernetes namespace to put sparkApplication :param cluster_context: context of the cluster :param application_file: yaml file if passed :param get_logs: get the stdout of the container as logs of the tasks. :param do_xcom_push: If True, the content of the file /airflow/xcom/return.json in the container will also be pushed to an XCom when the container completes. :param success_run_history_limit: Number of past successful runs of the application to keep. :param delete_on_termination: What to do when the pod reaches its final state, or the execution is interrupted. If True (default), delete the pod; if False, leave the pod. :param startup_timeout_seconds: timeout in seconds to startup the pod. :param log_events_on_failure: Log the pod's events if a failure occurs :param reattach_on_restart: if the scheduler dies while the pod is running, reattach and monitor """
[docs] template_fields = ["application_file", "namespace", "template_spec"]
[docs] template_fields_renderers = {"template_spec": "py"}
[docs] template_ext = ("yaml", "yml", "json")
[docs] ui_color = "#f4a460"
def __init__( self, *, image: str | None = None, code_path: str | None = None, namespace: str = "default", name: str = "default", application_file: str | None = None, template_spec=None, get_logs: bool = True, do_xcom_push: bool = False, success_run_history_limit: int = 1, startup_timeout_seconds=600, log_events_on_failure: bool = False, reattach_on_restart: bool = True, delete_on_termination: bool = True, kubernetes_conn_id: str = "kubernetes_default", **kwargs, ) -> None: if kwargs.get("xcom_push") is not None: raise AirflowException("'xcom_push' was deprecated, use 'do_xcom_push' instead") super().__init__(name=name, **kwargs) self.image = image self.code_path = code_path self.application_file = application_file self.template_spec = template_spec self.name = self.create_job_name() self.kubernetes_conn_id = kubernetes_conn_id self.startup_timeout_seconds = startup_timeout_seconds self.reattach_on_restart = reattach_on_restart self.delete_on_termination = delete_on_termination self.do_xcom_push = do_xcom_push self.namespace = namespace self.get_logs = get_logs self.log_events_on_failure = log_events_on_failure self.success_run_history_limit = success_run_history_limit def _render_nested_template_fields( self, content: Any, context: Context, jinja_env: jinja2.Environment, seen_oids: set, ) -> None: if id(content) not in seen_oids and isinstance(content, k8s.V1EnvVar): seen_oids.add(id(content)) self._do_render_template_fields(content, ("value", "name"), context, jinja_env, seen_oids) return super()._render_nested_template_fields(content, context, jinja_env, seen_oids)
[docs] def manage_template_specs(self): if self.application_file: template_body = _load_body_to_dict(open(self.application_file)) elif self.template_spec: template_body = self.template_spec else: raise AirflowException("either application_file or template_spec should be passed") if "spark" not in template_body: template_body = {"spark": template_body} return template_body
[docs] def create_job_name(self): initial_name = PodGenerator.make_unique_pod_id(self.task_id)[:MAX_LABEL_LEN] return re.sub(r"[^a-z0-9-]+", "-", initial_name.lower())
@staticmethod def _get_pod_identifying_label_string(labels) -> str: filtered_labels = {label_id: label for label_id, label in labels.items() if label_id != "try_number"} return ",".join([label_id + "=" + label for label_id, label in sorted(filtered_labels.items())]) @staticmethod
[docs] def create_labels_for_pod(context: dict | None = None, include_try_number: bool = True) -> dict: """ Generate labels for the pod to track the pod in case of Operator crash. :param include_try_number: add try number to labels :param context: task context provided by airflow DAG :return: dict. """ if not context: return {} ti = context["ti"] run_id = context["run_id"] labels = { "dag_id": ti.dag_id, "task_id": ti.task_id, "run_id": run_id, "spark_kubernetes_operator": "True", # 'execution_date': context['ts'], # 'try_number': context['ti'].try_number, } # If running on Airflow 2.3+: map_index = getattr(ti, "map_index", -1) if map_index >= 0: labels["map_index"] = map_index if include_try_number: labels.update(try_number=ti.try_number) # In the case of sub dags this is just useful if context["dag"].is_subdag: labels["parent_dag_id"] = context["dag"].parent_dag.dag_id # Ensure that label is valid for Kube, # and if not truncate/remove invalid chars and replace with short hash. for label_id, label in labels.items(): safe_label = pod_generator.make_safe_label_value(str(label)) labels[label_id] = safe_label return labels
@cached_property
[docs] def pod_manager(self) -> PodManager: return PodManager(kube_client=self.client)
@staticmethod def _try_numbers_match(context, pod) -> bool: return pod.metadata.labels["try_number"] == context["ti"].try_number @property
[docs] def template_body(self): """Templated body for CustomObjectLauncher.""" return self.manage_template_specs()
[docs] def find_spark_job(self, context): labels = self.create_labels_for_pod(context, include_try_number=False) label_selector = self._get_pod_identifying_label_string(labels) + ",spark-role=driver" pod_list = self.client.list_namespaced_pod(self.namespace, label_selector=label_selector).items pod = None if len(pod_list) > 1: # and self.reattach_on_restart: raise AirflowException(f"More than one pod running with labels: {label_selector}") elif len(pod_list) == 1: pod = pod_list[0] self.log.info( "Found matching driver pod %s with labels %s", pod.metadata.name, pod.metadata.labels ) self.log.info("`try_number` of task_instance: %s", context["ti"].try_number) self.log.info("`try_number` of pod: %s", pod.metadata.labels["try_number"]) return pod
[docs] def get_or_create_spark_crd(self, launcher: CustomObjectLauncher, context) -> k8s.V1Pod: if self.reattach_on_restart: driver_pod = self.find_spark_job(context) if driver_pod: return driver_pod driver_pod, spark_obj_spec = launcher.start_spark_job( image=self.image, code_path=self.code_path, startup_timeout=self.startup_timeout_seconds ) return driver_pod
[docs] def process_pod_deletion(self, pod, *, reraise=True): if pod is not None: if self.delete_on_termination: self.log.info("Deleting spark job: %s", pod.metadata.name.replace("-driver", "")) self.launcher.delete_spark_job(pod.metadata.name.replace("-driver", "")) else: self.log.info("skipping deleting spark job: %s", pod.metadata.name)
@cached_property
[docs] def hook(self) -> KubernetesHook: hook = KubernetesHook( conn_id=self.kubernetes_conn_id, in_cluster=self.in_cluster or self.template_body.get("kubernetes", {}).get("in_cluster", False), config_file=self.config_file or self.template_body.get("kubernetes", {}).get("kube_config_file", None), cluster_context=self.cluster_context or self.template_body.get("kubernetes", {}).get("cluster_context", None), ) return hook
@cached_property
[docs] def client(self) -> CoreV1Api: return self.hook.core_v1_client
@cached_property
[docs] def custom_obj_api(self) -> CustomObjectsApi: return CustomObjectsApi()
[docs] def execute(self, context: Context): self.log.info("Creating sparkApplication.") self.launcher = CustomObjectLauncher( name=self.name, namespace=self.namespace, kube_client=self.client, custom_obj_api=self.custom_obj_api, template_body=self.template_body, ) self.pod = self.get_or_create_spark_crd(self.launcher, context) self.BASE_CONTAINER_NAME = "spark-kubernetes-driver" self.pod_request_obj = self.launcher.pod_spec return super().execute(context=context)
[docs] def on_kill(self) -> None: if self.launcher: self.log.debug("Deleting spark job for task %s", self.task_id) self.launcher.delete_spark_job()
[docs] def patch_already_checked(self, pod: k8s.V1Pod, *, reraise=True): """Add an "already checked" annotation to ensure we don't reattach on retries.""" pod.metadata.labels["already_checked"] = "True" body = PodGenerator.serialize_pod(pod) self.client.patch_namespaced_pod(pod.metadata.name, pod.metadata.namespace, body)
[docs] def dry_run(self) -> None: """Print out the spark job that would be created by this operator.""" print(prune_dict(self.launcher.body, mode="strict"))

Was this entry helpful?