airflow.providers.cncf.kubernetes.operators.spark_kubernetes

Module Contents

Classes

SparkKubernetesOperator

Creates sparkApplication object in kubernetes cluster:

class airflow.providers.cncf.kubernetes.operators.spark_kubernetes.SparkKubernetesOperator(*, application_file, namespace=None, kubernetes_conn_id='kubernetes_default', api_group='sparkoperator.k8s.io', api_version='v1beta2', **kwargs)[source]

Bases: airflow.models.BaseOperator

Creates sparkApplication object in kubernetes cluster:

See also

For more detail about Spark Application Object have a look at the reference: https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/v1beta2-1.1.0-2.4.5/docs/api-docs.md#sparkapplication

Parameters
  • application_file (str) – Defines Kubernetes ‘custom_resource_definition’ of ‘sparkApplication’ as either a path to a ‘.yaml’ file, ‘.json’ file, YAML string or JSON string.

  • namespace (str | None) – kubernetes namespace to put sparkApplication

  • kubernetes_conn_id (str) – The kubernetes connection id for the to Kubernetes cluster.

  • api_group (str) – kubernetes api group of sparkApplication

  • api_version (str) – kubernetes api version of sparkApplication

template_fields: Sequence[str] = ('application_file', 'namespace')[source]
template_ext: Sequence[str] = ('.yaml', '.yml', '.json')[source]
ui_color = '#f4a460'[source]
execute(context)[source]

This is the main method to derive when creating an operator. Context is the same dictionary used as when rendering jinja templates.

Refer to get_template_context for more context.

Was this entry helpful?