KubernetesPodOperator¶
The KubernetesPodOperator
allows
you to create and run Pods on a Kubernetes cluster.
Note
If you use Google Kubernetes Engine, consider using the GKEStartPodOperator operator as it simplifies the Kubernetes authorization process.
Note
The Kubernetes executor is not required to use this operator.
How does this operator work?¶
The KubernetesPodOperator
uses the
Kubernetes API to launch a pod in a Kubernetes cluster. By supplying an
image URL and a command with optional arguments, the operator uses the Kube Python Client to generate a Kubernetes API
request that dynamically launches those individual pods.
Users can specify a kubeconfig file using the config_file
parameter, otherwise the operator will default
to ~/.kube/config
.
The KubernetesPodOperator
enables task-level
resource configuration and is optimal for custom Python
dependencies that are not available through the public PyPI repository. It also allows users to supply a template
YAML file using the pod_template_file
parameter.
Ultimately, it allows Airflow to act a job orchestrator - no matter the language those jobs are written in.
Debugging KubernetesPodOperator¶
You can print out the Kubernetes manifest for the pod that would be created at runtime by calling
dry_run()
on an instance of the operator.
from airflow.providers.cncf.kubernetes.operators.kubernetes_pod import (
KubernetesPodOperator,
)
k = KubernetesPodOperator(
name="hello-dry-run",
image="debian",
cmds=["bash", "-cx"],
arguments=["echo", "10"],
labels={"foo": "bar"},
task_id="dry_run_demo",
do_xcom_push=True,
)
k.dry_run()
How to use cluster ConfigMaps, Secrets, and Volumes with Pod?¶
To add ConfigMaps, Volumes, and other Kubernetes native objects, we recommend that you import the Kubernetes model API like this:
from kubernetes.client import models as k8s
With this API object, you can have access to all Kubernetes API objects in the form of python classes.
Using this method will ensure correctness
and type safety. While we have removed almost all Kubernetes convenience classes, we have kept the
Secret
class to simplify the process of generating secret volumes/env variables.
secret_file = Secret('volume', '/etc/sql_conn', 'airflow-secrets', 'sql_alchemy_conn')
secret_env = Secret('env', 'SQL_CONN', 'airflow-secrets', 'sql_alchemy_conn')
secret_all_keys = Secret('env', None, 'airflow-secrets-2')
volume_mount = k8s.V1VolumeMount(
name='test-volume', mount_path='/root/mount_file', sub_path=None, read_only=True
)
configmaps = [
k8s.V1EnvFromSource(config_map_ref=k8s.V1ConfigMapEnvSource(name='test-configmap-1')),
k8s.V1EnvFromSource(config_map_ref=k8s.V1ConfigMapEnvSource(name='test-configmap-2')),
]
volume = k8s.V1Volume(
name='test-volume',
persistent_volume_claim=k8s.V1PersistentVolumeClaimVolumeSource(claim_name='test-volume'),
)
port = k8s.V1ContainerPort(name='http', container_port=80)
init_container_volume_mounts = [
k8s.V1VolumeMount(mount_path='/etc/foo', name='test-volume', sub_path=None, read_only=True)
]
init_environments = [k8s.V1EnvVar(name='key1', value='value1'), k8s.V1EnvVar(name='key2', value='value2')]
init_container = k8s.V1Container(
name="init-container",
image="ubuntu:16.04",
env=init_environments,
volume_mounts=init_container_volume_mounts,
command=["bash", "-cx"],
args=["echo 10"],
)
affinity = k8s.V1Affinity(
node_affinity=k8s.V1NodeAffinity(
preferred_during_scheduling_ignored_during_execution=[
k8s.V1PreferredSchedulingTerm(
weight=1,
preference=k8s.V1NodeSelectorTerm(
match_expressions=[
k8s.V1NodeSelectorRequirement(key="disktype", operator="In", values=["ssd"])
]
),
)
]
),
pod_affinity=k8s.V1PodAffinity(
required_during_scheduling_ignored_during_execution=[
k8s.V1WeightedPodAffinityTerm(
weight=1,
pod_affinity_term=k8s.V1PodAffinityTerm(
label_selector=k8s.V1LabelSelector(
match_expressions=[
k8s.V1LabelSelectorRequirement(key="security", operator="In", values="S1")
]
),
topology_key="failure-domain.beta.kubernetes.io/zone",
),
)
]
),
)
tolerations = [k8s.V1Toleration(key="key", operator="Equal", value="value")]
Difference between KubernetesPodOperator
and Kubernetes object spec¶
The KubernetesPodOperator
can be considered
a substitute for a Kubernetes object spec definition that is able
to be run in the Airflow scheduler in the DAG context. If using the operator, there is no need to create the
equivalent YAML/JSON object spec for the Pod you would like to run.
The YAML file can still be provided with the pod_template_file
or even the Pod Spec constructed in Python via
the full_pod_spec
parameter which requires a Kubernetes V1Pod
.
How to use private images (container registry)?¶
By default, the KubernetesPodOperator
will
look for images hosted publicly on Dockerhub.
To pull images from a private registry (such as ECR, GCR, Quay, or others), you must create a
Kubernetes Secret that represents the credentials for accessing images from the private registry that is ultimately
specified in the image_pull_secrets
parameter.
Create the Secret using kubectl
:
kubectl create secret docker-registry testquay \
--docker-server=quay.io \
--docker-username=<Profile name> \
--docker-password=<password>
Then use it in your pod like so:
quay_k8s = KubernetesPodOperator(
namespace='default',
image='quay.io/apache/bash',
image_pull_secrets=[k8s.V1LocalObjectReference('testquay')],
cmds=["bash", "-cx"],
arguments=["echo", "10", "echo pwd"],
labels={"foo": "bar"},
name="airflow-private-image-pod",
is_delete_operator_pod=True,
in_cluster=True,
task_id="task-two",
get_logs=True,
)
How does XCom work?¶
The KubernetesPodOperator
handles
XCom values differently than other operators. In order to pass a XCom value
from your Pod you must specify the do_xcom_push
as True
. This will create a sidecar container that runs
alongside the Pod. The Pod must write the XCom value into this location at the /airflow/xcom/return.json
path.
See the following example on how this occurs:
write_xcom = KubernetesPodOperator(
namespace='default',
image='alpine',
cmds=["sh", "-c", "mkdir -p /airflow/xcom/;echo '[1,2,3,4]' > /airflow/xcom/return.json"],
name="write-xcom",
do_xcom_push=True,
is_delete_operator_pod=True,
in_cluster=True,
task_id="write-xcom",
get_logs=True,
)
pod_task_xcom_result = BashOperator(
bash_command="echo \"{{ task_instance.xcom_pull('write-xcom')[0] }}\"",
task_id="pod_task_xcom_result",
)
write_xcom >> pod_task_xcom_result
Note
XCOMs will be pushed only for tasks marked as State.SUCCESS
.
Reference¶
For further information, look at: