Apache Beam Operators

Apache Beam is an open source, unified model for defining both batch and streaming data-parallel processing pipelines. Using one of the open source Beam SDKs, you build a program that defines the pipeline. The pipeline is then executed by one of Beam’s supported distributed processing back-ends, which include Apache Flink, Apache Spark, and Google Cloud Dataflow.

Note

This operator requires gcloud command (Google Cloud SDK) to be installed on the Airflow worker <https://cloud.google.com/sdk/docs/install> when the Apache Beam pipeline runs on the Dataflow service.

Run Python Pipelines in Apache Beam

The py_file argument must be specified for BeamRunPythonPipelineOperator as it contains the pipeline to be executed by Beam. The Python file can be available on GCS that Airflow has the ability to download or available on the local filesystem (provide the absolute path to it).

The py_interpreter argument specifies the Python version to be used when executing the pipeline, the default is python3. If your Airflow instance is running on Python 2 - specify python2 and ensure your py_file is in Python 2. For best results, use Python 3.

If py_requirements argument is specified a temporary Python virtual environment with specified requirements will be created and within it pipeline will run.

The py_system_site_packages argument specifies whether or not all the Python packages from your Airflow instance, will be accessible within virtual environment (if py_requirements argument is specified), recommend avoiding unless the Dataflow job requires it.

Python Pipelines with DirectRunner

tests/system/apache/beam/example_python.py[source]

start_python_pipeline_local_direct_runner = BeamRunPythonPipelineOperator(
    task_id="start_python_pipeline_local_direct_runner",
    py_file="apache_beam.examples.wordcount",
    py_options=["-m"],
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
)

tests/system/apache/beam/example_python.py[source]

start_python_pipeline_direct_runner = BeamRunPythonPipelineOperator(
    task_id="start_python_pipeline_direct_runner",
    py_file=GCS_PYTHON,
    py_options=[],
    pipeline_options={"output": GCS_OUTPUT},
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
)

You can use deferrable mode for this action in order to run the operator asynchronously. It will give you a possibility to free up the worker when it knows it has to wait, and hand off the job of resuming Operator to a Trigger. As a result, while it is suspended (deferred), it is not taking up a worker slot and your cluster will have a lot less resources wasted on idle Operators or Sensors:

tests/system/apache/beam/example_python_async.py[source]

start_python_pipeline_local_direct_runner = BeamRunPythonPipelineOperator(
    task_id="start_python_pipeline_local_direct_runner",
    py_file="apache_beam.examples.wordcount",
    py_options=["-m"],
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
    deferrable=True,
)

tests/system/apache/beam/example_python_async.py[source]

start_python_pipeline_direct_runner = BeamRunPythonPipelineOperator(
    task_id="start_python_pipeline_direct_runner",
    py_file=GCS_PYTHON,
    py_options=[],
    pipeline_options={"output": GCS_OUTPUT},
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
    deferrable=True,
)

Python Pipelines with DataflowRunner

tests/system/apache/beam/example_python.py[source]

start_python_pipeline_dataflow_runner = BeamRunPythonPipelineOperator(
    task_id="start_python_pipeline_dataflow_runner",
    runner="DataflowRunner",
    py_file=GCS_PYTHON,
    pipeline_options={
        "tempLocation": GCS_TMP,
        "stagingLocation": GCS_STAGING,
        "output": GCS_OUTPUT,
    },
    py_options=[],
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
    dataflow_config=DataflowConfiguration(
        job_name="{{task.task_id}}", project_id=GCP_PROJECT_ID, location="us-central1"
    ),
)

tests/system/apache/beam/example_python_dataflow.py[source]

start_python_job_dataflow_runner_async = BeamRunPythonPipelineOperator(
    task_id="start_python_job_dataflow_runner_async",
    runner="DataflowRunner",
    py_file=GCS_PYTHON_DATAFLOW_ASYNC,
    pipeline_options={
        "tempLocation": GCS_TMP,
        "stagingLocation": GCS_STAGING,
        "output": GCS_OUTPUT,
    },
    py_options=[],
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
    dataflow_config=DataflowConfiguration(
        job_name="{{task.task_id}}",
        project_id=GCP_PROJECT_ID,
        location="us-central1",
        wait_until_finished=False,
    ),
)

wait_for_python_job_dataflow_runner_async_done = DataflowJobStatusSensor(
    task_id="wait-for-python-job-async-done",
    job_id="{{task_instance.xcom_pull('start_python_job_dataflow_runner_async')['dataflow_job_id']}}",
    expected_statuses={DataflowJobStatus.JOB_STATE_DONE},
    project_id=GCP_PROJECT_ID,
    location="us-central1",
)

start_python_job_dataflow_runner_async >> wait_for_python_job_dataflow_runner_async_done

You can use deferrable mode for this action in order to run the operator asynchronously. It will give you a possibility to free up the worker when it knows it has to wait, and hand off the job of resuming Operator to a Trigger. As a result, while it is suspended (deferred), it is not taking up a worker slot and your cluster will have a lot less resources wasted on idle Operators or Sensors:

tests/system/apache/beam/example_python_async.py[source]

start_python_pipeline_dataflow_runner = BeamRunPythonPipelineOperator(
    task_id="start_python_pipeline_dataflow_runner",
    runner="DataflowRunner",
    py_file=GCS_PYTHON,
    pipeline_options={
        "tempLocation": GCS_TMP,
        "stagingLocation": GCS_STAGING,
        "output": GCS_OUTPUT,
    },
    py_options=[],
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
    dataflow_config=DataflowConfiguration(
        job_name="{{task.task_id}}", project_id=GCP_PROJECT_ID, location="us-central1"
    ),
    deferrable=True,
)


Run Java Pipelines in Apache Beam

For Java pipeline the jar argument must be specified for BeamRunJavaPipelineOperator as it contains the pipeline to be executed by Apache Beam. The JAR can be available on GCS that Airflow has the ability to download or available on the local filesystem (provide the absolute path to it).

Java Pipelines with DirectRunner

tests/system/apache/beam/example_beam.py[source]

jar_to_local_direct_runner = GCSToLocalFilesystemOperator(
    task_id="jar_to_local_direct_runner",
    bucket=GCS_JAR_DIRECT_RUNNER_BUCKET_NAME,
    object_name=GCS_JAR_DIRECT_RUNNER_OBJECT_NAME,
    filename="/tmp/beam_wordcount_direct_runner_{{ ds_nodash }}.jar",
)

start_java_pipeline_direct_runner = BeamRunJavaPipelineOperator(
    task_id="start_java_pipeline_direct_runner",
    jar="/tmp/beam_wordcount_direct_runner_{{ ds_nodash }}.jar",
    pipeline_options={
        "output": "/tmp/start_java_pipeline_direct_runner",
        "inputFile": GCS_INPUT,
    },
    job_class="org.apache.beam.examples.WordCount",
)

jar_to_local_direct_runner >> start_java_pipeline_direct_runner

Java Pipelines with DataflowRunner

tests/system/apache/beam/example_java_dataflow.py[source]

jar_to_local_dataflow_runner = GCSToLocalFilesystemOperator(
    task_id="jar_to_local_dataflow_runner",
    bucket=GCS_JAR_DATAFLOW_RUNNER_BUCKET_NAME,
    object_name=GCS_JAR_DATAFLOW_RUNNER_OBJECT_NAME,
    filename="/tmp/beam_wordcount_dataflow_runner_{{ ds_nodash }}.jar",
)

start_java_pipeline_dataflow = BeamRunJavaPipelineOperator(
    task_id="start_java_pipeline_dataflow",
    runner="DataflowRunner",
    jar="/tmp/beam_wordcount_dataflow_runner_{{ ds_nodash }}.jar",
    pipeline_options={
        "tempLocation": GCS_TMP,
        "stagingLocation": GCS_STAGING,
        "output": GCS_OUTPUT,
    },
    job_class="org.apache.beam.examples.WordCount",
    dataflow_config={"job_name": "{{task.task_id}}", "location": "us-central1"},
)

jar_to_local_dataflow_runner >> start_java_pipeline_dataflow


Run Go Pipelines in Apache Beam

The go_file argument must be specified for BeamRunGoPipelineOperator as it contains the pipeline to be executed by Beam. The Go file can be available on GCS that Airflow has the ability to download or available on the local filesystem (provide the absolute path to it). When running from the local filesystem the equivalent will be go run <go_file>. If pulling from GCS bucket, beforehand it will init the module and install dependencies with go run init example.com/main and go mod tidy.

Go Pipelines with DirectRunner

tests/system/apache/beam/example_go.py[source]

start_go_pipeline_local_direct_runner = BeamRunGoPipelineOperator(
    task_id="start_go_pipeline_local_direct_runner",
    go_file="files/apache_beam/examples/wordcount.go",
)

tests/system/apache/beam/example_go.py[source]

start_go_pipeline_direct_runner = BeamRunGoPipelineOperator(
    task_id="start_go_pipeline_direct_runner",
    go_file=GCS_GO,
    pipeline_options={"output": GCS_OUTPUT},
)

Go Pipelines with DataflowRunner

tests/system/apache/beam/example_go.py[source]

start_go_pipeline_dataflow_runner = BeamRunGoPipelineOperator(
    task_id="start_go_pipeline_dataflow_runner",
    runner="DataflowRunner",
    go_file=GCS_GO,
    pipeline_options={
        "tempLocation": GCS_TMP,
        "stagingLocation": GCS_STAGING,
        "output": GCS_OUTPUT,
        "WorkerHarnessContainerImage": "apache/beam_go_sdk:latest",
    },
    dataflow_config=DataflowConfiguration(
        job_name="{{task.task_id}}", project_id=GCP_PROJECT_ID, location="us-central1"
    ),
)

tests/system/apache/beam/example_go_dataflow.py[source]

start_go_job_dataflow_runner_async = BeamRunGoPipelineOperator(
    task_id="start_go_job_dataflow_runner_async",
    runner="DataflowRunner",
    go_file=GCS_GO_DATAFLOW_ASYNC,
    pipeline_options={
        "tempLocation": GCS_TMP,
        "stagingLocation": GCS_STAGING,
        "output": GCS_OUTPUT,
        "WorkerHarnessContainerImage": "apache/beam_go_sdk:latest",
    },
    dataflow_config=DataflowConfiguration(
        job_name="{{task.task_id}}",
        project_id=GCP_PROJECT_ID,
        location="us-central1",
        wait_until_finished=False,
    ),
)

wait_for_go_job_dataflow_runner_async_done = DataflowJobStatusSensor(
    task_id="wait-for-go-job-async-done",
    job_id="{{task_instance.xcom_pull('start_go_job_dataflow_runner_async')['dataflow_job_id']}}",
    expected_statuses={DataflowJobStatus.JOB_STATE_DONE},
    project_id=GCP_PROJECT_ID,
    location="us-central1",
)

start_go_job_dataflow_runner_async >> wait_for_go_job_dataflow_runner_async_done

Was this entry helpful?