Source code for tests.system.amazon.aws.example_bedrock_batch_inference

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import json
import logging
from datetime import datetime
from tempfile import NamedTemporaryFile

from botocore.exceptions import ClientError

from airflow.decorators import task
from airflow.models.baseoperator import chain
from airflow.models.dag import DAG
from airflow.providers.amazon.aws.hooks.bedrock import BedrockHook
from airflow.providers.amazon.aws.hooks.s3 import S3Hook
from airflow.providers.amazon.aws.operators.bedrock import (
    BedrockBatchInferenceOperator,
    BedrockInvokeModelOperator,
)
from airflow.providers.amazon.aws.operators.s3 import (
    S3CreateBucketOperator,
    S3DeleteBucketOperator,
)
from airflow.providers.amazon.aws.sensors.bedrock import BedrockBatchInferenceSensor
from airflow.utils.trigger_rule import TriggerRule

from system.amazon.aws.utils import SystemTestContextBuilder

[docs] log = logging.getLogger(__name__)
# Externally fetched variables:
[docs] ROLE_ARN_KEY = "ROLE_ARN"
[docs] sys_test_context_task = SystemTestContextBuilder().add_variable(ROLE_ARN_KEY).build()
[docs] DAG_ID = "example_bedrock_batch_inference"
####################################################################### # NOTE: # Access to the following foundation model must be requested via # the Amazon Bedrock console and may take up to 24 hours to apply: #######################################################################
[docs] CLAUDE_MODEL_ID = "anthropic.claude-3-sonnet-20240229-v1:0"
[docs] ANTHROPIC_VERSION = "bedrock-2023-05-31"
# Batch inferences currently require a minimum of 100 prompts per batch.
[docs] MIN_NUM_PROMPTS = 300
[docs] PROMPT_TEMPLATE = "Even numbers are red. Odd numbers are blue. What color is {n}?"
@task
[docs] def generate_prompts(_env_id: str, _bucket: str, _key: str): """ Bedrock Batch Inference requires one or more jsonl-formatted files in an S3 bucket. The JSONL format requires one serialized json object per prompt per line. """ with NamedTemporaryFile(mode="w") as tmp_file: # Generate the required number of prompts. prompts = [ { "modelInput": { "anthropic_version": ANTHROPIC_VERSION, "max_tokens": 1000, "messages": [PROMPT_TEMPLATE.format(n=n)], }, } for n in range(MIN_NUM_PROMPTS) ] # Convert each prompt to serialized json, append a newline, and write that line to the temp file. tmp_file.writelines(json.dumps(prompt) + "\n" for prompt in prompts) # Upload the file to S3. S3Hook().conn.upload_file(tmp_file.name, _bucket, _key)
@task(trigger_rule=TriggerRule.ALL_DONE)
[docs] def stop_batch_inference(job_arn: str): log.info("Stopping Batch Inference Job.") try: BedrockHook().conn.stop_model_invocation_job(jobIdentifier=job_arn) except ClientError as e: # If the job has already completed, boto will raise a ValidationException. Consider that a successful result. if (e.response["Error"]["Code"] == "ValidationException") and ( "State was: Completed" in e.response["Error"]["Message"] ): pass
with DAG( dag_id=DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), tags={"example"}, catchup=False, ) as dag:
[docs] test_context = sys_test_context_task()
env_id = test_context["ENV_ID"] bucket_name = f"{env_id}-bedrock" input_data_s3_key = f"{env_id}/prompt_list.jsonl" input_uri = f"s3://{bucket_name}/{input_data_s3_key}" output_uri = f"s3://{bucket_name}/output/" job_name = f"batch-infer-{env_id}" # Test that this configuration works for a single prompt before trying the batch inferences. # [START howto_operator_invoke_claude_messages] invoke_claude_messages = BedrockInvokeModelOperator( task_id="invoke_claude_messages", model_id=CLAUDE_MODEL_ID, input_data={ "anthropic_version": "bedrock-2023-05-31", "max_tokens": 1000, "messages": [{"role": "user", "content": PROMPT_TEMPLATE.format(n=42)}], }, ) # [END howto_operator_invoke_claude_messages] create_bucket = S3CreateBucketOperator(task_id="create_bucket", bucket_name=bucket_name) # [START howto_operator_bedrock_batch_inference] batch_infer = BedrockBatchInferenceOperator( task_id="batch_infer", job_name=job_name, role_arn=test_context[ROLE_ARN_KEY], model_id=CLAUDE_MODEL_ID, input_uri=input_uri, output_uri=output_uri, ) # [END howto_operator_bedrock_batch_inference] batch_infer.wait_for_completion = False # [START howto_sensor_bedrock_batch_inference_scheduled] await_job_scheduled = BedrockBatchInferenceSensor( task_id="await_job_scheduled", job_arn=batch_infer.output, success_state=BedrockBatchInferenceSensor.SuccessState.SCHEDULED, ) # [END howto_sensor_bedrock_batch_inference_scheduled] stop_job = stop_batch_inference(batch_infer.output) delete_bucket = S3DeleteBucketOperator( task_id="delete_bucket", trigger_rule=TriggerRule.ALL_DONE, bucket_name=bucket_name, force_delete=True, ) chain( # TEST SETUP test_context, invoke_claude_messages, create_bucket, generate_prompts(env_id, bucket_name, input_data_s3_key), # TEST BODY batch_infer, await_job_scheduled, stop_job, # TEST TEARDOWN delete_bucket, ) from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs] test_run = get_test_run(dag)

Was this entry helpful?