Source code for airflow.contrib.executors.kubernetes_executor

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import base64
import hashlib
import re
import json
import multiprocessing
from queue import Queue
from dateutil import parser
from uuid import uuid4
import kubernetes
from kubernetes import watch, client
from kubernetes.client.rest import ApiException
from airflow.configuration import conf
from airflow.contrib.kubernetes.pod_launcher import PodLauncher
from airflow.contrib.kubernetes.kube_client import get_kube_client
from airflow.contrib.kubernetes.worker_configuration import WorkerConfiguration
from airflow.executors.base_executor import BaseExecutor
from airflow.executors import Executors
from airflow.models import TaskInstance
from airflow.models.kubernetes import KubeResourceVersion, KubeWorkerIdentifier
from airflow.utils.state import State
from airflow.utils.db import provide_session, create_session
from airflow import configuration, settings
from airflow.exceptions import AirflowConfigException, AirflowException
from airflow.utils.log.logging_mixin import LoggingMixin


[docs]class KubernetesExecutorConfig: def __init__(self, image=None, image_pull_policy=None, request_memory=None, request_cpu=None, limit_memory=None, limit_cpu=None, gcp_service_account_key=None, node_selectors=None, affinity=None, annotations=None, volumes=None, volume_mounts=None, tolerations=None): self.image = image self.image_pull_policy = image_pull_policy self.request_memory = request_memory self.request_cpu = request_cpu self.limit_memory = limit_memory self.limit_cpu = limit_cpu self.gcp_service_account_key = gcp_service_account_key self.node_selectors = node_selectors self.affinity = affinity self.annotations = annotations self.volumes = volumes self.volume_mounts = volume_mounts self.tolerations = tolerations
[docs] def __repr__(self): return "{}(image={}, image_pull_policy={}, request_memory={}, request_cpu={}, " \ "limit_memory={}, limit_cpu={}, gcp_service_account_key={}, " \ "node_selectors={}, affinity={}, annotations={}, volumes={}, " \ "volume_mounts={}, tolerations={})" \ .format(KubernetesExecutorConfig.__name__, self.image, self.image_pull_policy, self.request_memory, self.request_cpu, self.limit_memory, self.limit_cpu, self.gcp_service_account_key, self.node_selectors, self.affinity, self.annotations, self.volumes, self.volume_mounts, self.tolerations)
@staticmethod
[docs] def from_dict(obj): if obj is None: return KubernetesExecutorConfig() if not isinstance(obj, dict): raise TypeError( 'Cannot convert a non-dictionary object into a KubernetesExecutorConfig') namespaced = obj.get(Executors.KubernetesExecutor, {}) return KubernetesExecutorConfig( image=namespaced.get('image', None), image_pull_policy=namespaced.get('image_pull_policy', None), request_memory=namespaced.get('request_memory', None), request_cpu=namespaced.get('request_cpu', None), limit_memory=namespaced.get('limit_memory', None), limit_cpu=namespaced.get('limit_cpu', None), gcp_service_account_key=namespaced.get('gcp_service_account_key', None), node_selectors=namespaced.get('node_selectors', None), affinity=namespaced.get('affinity', None), annotations=namespaced.get('annotations', {}), volumes=namespaced.get('volumes', []), volume_mounts=namespaced.get('volume_mounts', []), tolerations=namespaced.get('tolerations', None),
)
[docs] def as_dict(self): return { 'image': self.image, 'image_pull_policy': self.image_pull_policy, 'request_memory': self.request_memory, 'request_cpu': self.request_cpu, 'limit_memory': self.limit_memory, 'limit_cpu': self.limit_cpu, 'gcp_service_account_key': self.gcp_service_account_key, 'node_selectors': self.node_selectors, 'affinity': self.affinity, 'annotations': self.annotations, 'volumes': self.volumes, 'volume_mounts': self.volume_mounts, 'tolerations': self.tolerations,
}
[docs]class KubeConfig:
[docs] core_section = 'core'
[docs] kubernetes_section = 'kubernetes'
def __init__(self): configuration_dict = configuration.as_dict(display_sensitive=True) self.core_configuration = configuration_dict['core'] self.kube_secrets = configuration_dict.get('kubernetes_secrets', {}) self.kube_env_vars = configuration_dict.get('kubernetes_environment_variables', {}) self.env_from_configmap_ref = configuration.get(self.kubernetes_section, 'env_from_configmap_ref') self.env_from_secret_ref = configuration.get(self.kubernetes_section, 'env_from_secret_ref') self.airflow_home = settings.AIRFLOW_HOME self.dags_folder = configuration.get(self.core_section, 'dags_folder') self.parallelism = configuration.getint(self.core_section, 'PARALLELISM') self.worker_container_repository = configuration.get( self.kubernetes_section, 'worker_container_repository') self.worker_container_tag = configuration.get( self.kubernetes_section, 'worker_container_tag') self.kube_image = '{}:{}'.format( self.worker_container_repository, self.worker_container_tag) self.kube_image_pull_policy = configuration.get( self.kubernetes_section, "worker_container_image_pull_policy" ) self.kube_node_selectors = configuration_dict.get('kubernetes_node_selectors', {}) self.kube_annotations = configuration_dict.get('kubernetes_annotations', {}) self.delete_worker_pods = conf.getboolean( self.kubernetes_section, 'delete_worker_pods') self.worker_pods_creation_batch_size = conf.getint( self.kubernetes_section, 'worker_pods_creation_batch_size') self.worker_service_account_name = conf.get( self.kubernetes_section, 'worker_service_account_name') self.image_pull_secrets = conf.get(self.kubernetes_section, 'image_pull_secrets') # NOTE: user can build the dags into the docker image directly, # this will set to True if so self.dags_in_image = conf.getboolean(self.kubernetes_section, 'dags_in_image') # Run as user for pod security context self.worker_run_as_user = conf.get(self.kubernetes_section, 'run_as_user') self.worker_fs_group = conf.get(self.kubernetes_section, 'fs_group') # NOTE: `git_repo` and `git_branch` must be specified together as a pair # The http URL of the git repository to clone from self.git_repo = conf.get(self.kubernetes_section, 'git_repo') # The branch of the repository to be checked out self.git_branch = conf.get(self.kubernetes_section, 'git_branch') # Optionally, the directory in the git repository containing the dags self.git_subpath = conf.get(self.kubernetes_section, 'git_subpath') # Optionally, the root directory for git operations self.git_sync_root = conf.get(self.kubernetes_section, 'git_sync_root') # Optionally, the name at which to publish the checked-out files under --root self.git_sync_dest = conf.get(self.kubernetes_section, 'git_sync_dest') # Optionally, if git_dags_folder_mount_point is set the worker will use # {git_dags_folder_mount_point}/{git_sync_dest}/{git_subpath} as dags_folder self.git_dags_folder_mount_point = conf.get(self.kubernetes_section, 'git_dags_folder_mount_point') # Optionally a user may supply a (`git_user` AND `git_password`) OR # (`git_ssh_key_secret_name` AND `git_ssh_key_secret_key`) for private repositories self.git_user = conf.get(self.kubernetes_section, 'git_user') self.git_password = conf.get(self.kubernetes_section, 'git_password') self.git_ssh_key_secret_name = conf.get(self.kubernetes_section, 'git_ssh_key_secret_name') self.git_ssh_known_hosts_configmap_name = conf.get(self.kubernetes_section, 'git_ssh_known_hosts_configmap_name') # NOTE: The user may optionally use a volume claim to mount a PV containing # DAGs directly self.dags_volume_claim = conf.get(self.kubernetes_section, 'dags_volume_claim') # This prop may optionally be set for PV Claims and is used to write logs self.logs_volume_claim = conf.get(self.kubernetes_section, 'logs_volume_claim') # This prop may optionally be set for PV Claims and is used to locate DAGs # on a SubPath self.dags_volume_subpath = conf.get( self.kubernetes_section, 'dags_volume_subpath') # This prop may optionally be set for PV Claims and is used to locate logs # on a SubPath self.logs_volume_subpath = conf.get( self.kubernetes_section, 'logs_volume_subpath') # Optionally, hostPath volume containing DAGs self.dags_volume_host = conf.get(self.kubernetes_section, 'dags_volume_host') # Optionally, write logs to a hostPath Volume self.logs_volume_host = conf.get(self.kubernetes_section, 'logs_volume_host') # This prop may optionally be set for PV Claims and is used to write logs self.base_log_folder = configuration.get(self.core_section, 'base_log_folder') # The Kubernetes Namespace in which the Scheduler and Webserver reside. Note # that if your # cluster has RBAC enabled, your scheduler may need service account permissions to # create, watch, get, and delete pods in this namespace. self.kube_namespace = conf.get(self.kubernetes_section, 'namespace') # The Kubernetes Namespace in which pods will be created by the executor. Note # that if your # cluster has RBAC enabled, your workers may need service account permissions to # interact with cluster components. self.executor_namespace = conf.get(self.kubernetes_section, 'namespace') # Task secrets managed by KubernetesExecutor. self.gcp_service_account_keys = conf.get(self.kubernetes_section, 'gcp_service_account_keys') # If the user is using the git-sync container to clone their repository via git, # allow them to specify repository, tag, and pod name for the init container. self.git_sync_container_repository = conf.get( self.kubernetes_section, 'git_sync_container_repository') self.git_sync_container_tag = conf.get( self.kubernetes_section, 'git_sync_container_tag') self.git_sync_container = '{}:{}'.format( self.git_sync_container_repository, self.git_sync_container_tag) self.git_sync_init_container_name = conf.get( self.kubernetes_section, 'git_sync_init_container_name') # The worker pod may optionally have a valid Airflow config loaded via a # configmap self.airflow_configmap = conf.get(self.kubernetes_section, 'airflow_configmap') affinity_json = conf.get(self.kubernetes_section, 'affinity') if affinity_json: self.kube_affinity = json.loads(affinity_json) else: self.kube_affinity = None tolerations_json = conf.get(self.kubernetes_section, 'tolerations') if tolerations_json: self.kube_tolerations = json.loads(tolerations_json) else: self.kube_tolerations = None self._validate()
[docs] def _validate(self): # TODO: use XOR for dags_volume_claim and git_dags_folder_mount_point if not self.dags_volume_claim \ and not self.dags_volume_host \ and not self.dags_in_image \ and (not self.git_repo or not self.git_branch or not self.git_dags_folder_mount_point): raise AirflowConfigException( 'In kubernetes mode the following must be set in the `kubernetes` ' 'config section: `dags_volume_claim` ' 'or `dags_volume_host` ' 'or `dags_in_image` ' 'or `git_repo and git_branch and git_dags_folder_mount_point`') if self.git_repo \ and (self.git_user or self.git_password) \ and self.git_ssh_key_secret_name: raise AirflowConfigException( 'In kubernetes mode, using `git_repo` to pull the DAGs: '
'for private repositories, either `git_user` and `git_password` ' 'must be set for authentication through user credentials; ' 'or `git_ssh_key_secret_name` must be set for authentication ' 'through ssh key, but not both')
[docs]class KubernetesJobWatcher(multiprocessing.Process, LoggingMixin, object): def __init__(self, namespace, watcher_queue, resource_version, worker_uuid): multiprocessing.Process.__init__(self) self.namespace = namespace self.worker_uuid = worker_uuid self.watcher_queue = watcher_queue self.resource_version = resource_version
[docs] def run(self): kube_client = get_kube_client() while True: try: self.resource_version = self._run(kube_client, self.resource_version, self.worker_uuid) except Exception: self.log.exception('Unknown error in KubernetesJobWatcher. Failing') raise else: self.log.warn('Watch died gracefully, starting back up with: ' 'last resource_version: %s', self.resource_version)
[docs] def _run(self, kube_client, resource_version, worker_uuid): self.log.info( 'Event: and now my watch begins starting at resource_version: %s', resource_version ) watcher = watch.Watch() kwargs = {'label_selector': 'airflow-worker={}'.format(worker_uuid)} if resource_version: kwargs['resource_version'] = resource_version last_resource_version = None for event in watcher.stream(kube_client.list_namespaced_pod, self.namespace, **kwargs): task = event['object'] self.log.info( 'Event: %s had an event of type %s', task.metadata.name, event['type'] ) if event['type'] == 'ERROR': return self.process_error(event) self.process_status( task.metadata.name, task.status.phase, task.metadata.labels, task.metadata.resource_version ) last_resource_version = task.metadata.resource_version return last_resource_version
[docs] def process_error(self, event): self.log.error( 'Encountered Error response from k8s list namespaced pod stream => %s', event ) raw_object = event['raw_object'] if raw_object['code'] == 410: self.log.info( 'Kubernetes resource version is too old, must reset to 0 => %s', raw_object['message'] ) # Return resource version 0 return '0' raise AirflowException( 'Kubernetes failure for %s with code %s and message: %s', raw_object['reason'], raw_object['code'], raw_object['message']
)
[docs] def process_status(self, pod_id, status, labels, resource_version): if status == 'Pending': self.log.info('Event: %s Pending', pod_id) elif status == 'Failed': self.log.info('Event: %s Failed', pod_id) self.watcher_queue.put((pod_id, State.FAILED, labels, resource_version)) elif status == 'Succeeded': self.log.info('Event: %s Succeeded', pod_id) self.watcher_queue.put((pod_id, None, labels, resource_version)) elif status == 'Running': self.log.info('Event: %s is Running', pod_id) else: self.log.warn( 'Event: Invalid state: %s on pod: %s with labels: %s with ' 'resource_version: %s', status, pod_id, labels, resource_version
)
[docs]class AirflowKubernetesScheduler(LoggingMixin): def __init__(self, kube_config, task_queue, result_queue, kube_client, worker_uuid): self.log.debug("Creating Kubernetes executor") self.kube_config = kube_config self.task_queue = task_queue self.result_queue = result_queue self.namespace = self.kube_config.kube_namespace self.log.debug("Kubernetes using namespace %s", self.namespace) self.kube_client = kube_client self.launcher = PodLauncher(kube_client=self.kube_client) self.worker_configuration = WorkerConfiguration(kube_config=self.kube_config) self.watcher_queue = multiprocessing.Queue() self.worker_uuid = worker_uuid self.kube_watcher = self._make_kube_watcher()
[docs] def _make_kube_watcher(self): resource_version = KubeResourceVersion.get_current_resource_version() watcher = KubernetesJobWatcher(self.namespace, self.watcher_queue, resource_version, self.worker_uuid) watcher.start() return watcher
[docs] def _health_check_kube_watcher(self): if self.kube_watcher.is_alive(): pass else: self.log.error( 'Error while health checking kube watcher process. ' 'Process died for unknown reasons') self.kube_watcher = self._make_kube_watcher()
[docs] def run_next(self, next_job): """ The run_next command will check the task_queue for any un-run jobs. It will then create a unique job-id, launch that job in the cluster, and store relevant info in the current_jobs map so we can track the job's status """ self.log.info('Kubernetes job is %s', str(next_job)) key, command, kube_executor_config = next_job dag_id, task_id, execution_date, try_number = key self.log.debug("Kubernetes running for command %s", command) self.log.debug("Kubernetes launching image %s", self.kube_config.kube_image) pod = self.worker_configuration.make_pod( namespace=self.namespace, worker_uuid=self.worker_uuid, pod_id=self._create_pod_id(dag_id, task_id), dag_id=self._make_safe_label_value(dag_id), task_id=self._make_safe_label_value(task_id), try_number=try_number, execution_date=self._datetime_to_label_safe_datestring(execution_date), airflow_command=command, kube_executor_config=kube_executor_config ) # the watcher will monitor pods, so we do not block. self.launcher.run_pod_async(pod) self.log.debug("Kubernetes Job created!")
[docs] def delete_pod(self, pod_id): if self.kube_config.delete_worker_pods: try: self.kube_client.delete_namespaced_pod( pod_id, self.namespace, body=client.V1DeleteOptions()) except ApiException as e: # If the pod is already deleted if e.status != 404: raise
[docs] def sync(self): """ The sync function checks the status of all currently running kubernetes jobs. If a job is completed, it's status is placed in the result queue to be sent back to the scheduler. :return: """ self._health_check_kube_watcher() while not self.watcher_queue.empty(): self.process_watcher_task()
[docs] def process_watcher_task(self): pod_id, state, labels, resource_version = self.watcher_queue.get() self.log.info( 'Attempting to finish pod; pod_id: %s; state: %s; labels: %s', pod_id, state, labels ) key = self._labels_to_key(labels=labels) if key: self.log.debug('finishing job %s - %s (%s)', key, state, pod_id) self.result_queue.put((key, state, pod_id, resource_version))
@staticmethod
[docs] def _strip_unsafe_kubernetes_special_chars(string): """ Kubernetes only supports lowercase alphanumeric characters and "-" and "." in the pod name However, there are special rules about how "-" and "." can be used so let's only keep alphanumeric chars see here for detail: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/ :param string: The requested Pod name :return: ``str`` Pod name stripped of any unsafe characters """ return ''.join(ch.lower() for ind, ch in enumerate(string) if ch.isalnum())
@staticmethod
[docs] def _make_safe_pod_id(safe_dag_id, safe_task_id, safe_uuid): r""" Kubernetes pod names must be <= 253 chars and must pass the following regex for validation "^[a-z0-9]([-a-z0-9]*[a-z0-9])?(\.[a-z0-9]([-a-z0-9]*[a-z0-9])?)*$" :param safe_dag_id: a dag_id with only alphanumeric characters :param safe_task_id: a task_id with only alphanumeric characters :param random_uuid: a uuid :return: ``str`` valid Pod name of appropriate length """ MAX_POD_ID_LEN = 253 safe_key = safe_dag_id + safe_task_id safe_pod_id = safe_key[:MAX_POD_ID_LEN - len(safe_uuid) - 1] + "-" + safe_uuid return safe_pod_id
@staticmethod
[docs] def _make_safe_label_value(string): """ Valid label values must be 63 characters or less and must be empty or begin and end with an alphanumeric character ([a-z0-9A-Z]) with dashes (-), underscores (_), dots (.), and alphanumerics between. If the label value is then greater than 63 chars once made safe, or differs in any way from the original value sent to this function, then we need to truncate to 53chars, and append it with a unique hash. """ MAX_LABEL_LEN = 63 safe_label = re.sub(r'^[^a-z0-9A-Z]*|[^a-zA-Z0-9_\-\.]|[^a-z0-9A-Z]*$', '', string) if len(safe_label) > MAX_LABEL_LEN or string != safe_label: safe_hash = hashlib.md5(string.encode()).hexdigest()[:9] safe_label = safe_label[:MAX_LABEL_LEN - len(safe_hash) - 1] + "-" + safe_hash return safe_label
@staticmethod
[docs] def _create_pod_id(dag_id, task_id): safe_dag_id = AirflowKubernetesScheduler._strip_unsafe_kubernetes_special_chars( dag_id) safe_task_id = AirflowKubernetesScheduler._strip_unsafe_kubernetes_special_chars( task_id) safe_uuid = AirflowKubernetesScheduler._strip_unsafe_kubernetes_special_chars( uuid4().hex) return AirflowKubernetesScheduler._make_safe_pod_id(safe_dag_id, safe_task_id, safe_uuid)
@staticmethod
[docs] def _label_safe_datestring_to_datetime(string): """ Kubernetes doesn't permit ":" in labels. ISO datetime format uses ":" but not "_", let's replace ":" with "_" :param string: str :return: datetime.datetime object """ return parser.parse(string.replace('_plus_', '+').replace("_", ":"))
@staticmethod
[docs] def _datetime_to_label_safe_datestring(datetime_obj): """ Kubernetes doesn't like ":" in labels, since ISO datetime format uses ":" but not "_" let's replace ":" with "_" :param datetime_obj: datetime.datetime object :return: ISO-like string representing the datetime """ return datetime_obj.isoformat().replace(":", "_").replace('+', '_plus_')
[docs] def _labels_to_key(self, labels): try_num = 1 try: try_num = int(labels.get('try_number', '1')) except ValueError: self.log.warn("could not get try_number as an int: %s", labels.get('try_number', '1')) try: dag_id = labels['dag_id'] task_id = labels['task_id'] ex_time = self._label_safe_datestring_to_datetime(labels['execution_date']) except Exception as e: self.log.warn( 'Error while retrieving labels; labels: %s; exception: %s', labels, e ) return None with create_session() as session: tasks = ( session .query(TaskInstance) .filter_by(execution_date=ex_time).all() ) self.log.info( 'Checking %s task instances.', len(tasks) ) for task in tasks: if ( self._make_safe_label_value(task.dag_id) == dag_id and self._make_safe_label_value(task.task_id) == task_id and task.execution_date == ex_time ): self.log.info( 'Found matching task %s-%s (%s) with current state of %s', task.dag_id, task.task_id, task.execution_date, task.state ) dag_id = task.dag_id task_id = task.task_id return (dag_id, task_id, ex_time, try_num) self.log.warn( 'Failed to find and match task details to a pod; labels: %s', labels ) return None
[docs]class KubernetesExecutor(BaseExecutor, LoggingMixin): def __init__(self): self.kube_config = KubeConfig() self.task_queue = None self.result_queue = None self.kube_scheduler = None self.kube_client = None self.worker_uuid = None super(KubernetesExecutor, self).__init__(parallelism=self.kube_config.parallelism) @provide_session
[docs] def clear_not_launched_queued_tasks(self, session=None): """ If the airflow scheduler restarts with pending "Queued" tasks, the tasks may or may not have been launched Thus, on starting up the scheduler let's check every "Queued" task to see if it has been launched (ie: if there is a corresponding pod on kubernetes) If it has been launched then do nothing, otherwise reset the state to "None" so the task will be rescheduled This will not be necessary in a future version of airflow in which there is proper support for State.LAUNCHED """ queued_tasks = session\ .query(TaskInstance)\ .filter(TaskInstance.state == State.QUEUED).all() self.log.info( 'When executor started up, found %s queued task instances', len(queued_tasks) ) for task in queued_tasks: dict_string = ( "dag_id={},task_id={},execution_date={},airflow-worker={}".format( AirflowKubernetesScheduler._make_safe_label_value(task.dag_id), AirflowKubernetesScheduler._make_safe_label_value(task.task_id), AirflowKubernetesScheduler._datetime_to_label_safe_datestring( task.execution_date ), self.worker_uuid ) ) kwargs = dict(label_selector=dict_string) pod_list = self.kube_client.list_namespaced_pod( self.kube_config.kube_namespace, **kwargs) if len(pod_list.items) == 0: self.log.info( 'TaskInstance: %s found in queued state but was not launched, ' 'rescheduling', task ) session.query(TaskInstance).filter( TaskInstance.dag_id == task.dag_id, TaskInstance.task_id == task.task_id, TaskInstance.execution_date == task.execution_date ).update({TaskInstance.state: State.NONE})
[docs] def _inject_secrets(self): def _create_or_update_secret(secret_name, secret_path): try: return self.kube_client.create_namespaced_secret( self.kube_config.executor_namespace, kubernetes.client.V1Secret( data={ 'key.json': base64.b64encode(open(secret_path, 'r').read())}, metadata=kubernetes.client.V1ObjectMeta(name=secret_name))) except ApiException as e: if e.status == 409: return self.kube_client.replace_namespaced_secret( secret_name, self.kube_config.executor_namespace, kubernetes.client.V1Secret( data={'key.json': base64.b64encode( open(secret_path, 'r').read())}, metadata=kubernetes.client.V1ObjectMeta(name=secret_name))) self.log.exception( 'Exception while trying to inject secret. ' 'Secret name: %s, error details: %s', secret_name, e ) raise # For each GCP service account key, inject it as a secret in executor # namespace with the specific secret name configured in the airflow.cfg. # We let exceptions to pass through to users. if self.kube_config.gcp_service_account_keys: name_path_pair_list = [ {'name': account_spec.strip().split('=')[0], 'path': account_spec.strip().split('=')[1]} for account_spec in self.kube_config.gcp_service_account_keys.split(',')] for service_account in name_path_pair_list: _create_or_update_secret(service_account['name'], service_account['path'])
[docs] def start(self): self.log.info('Start Kubernetes executor') self.worker_uuid = KubeWorkerIdentifier.get_or_create_current_kube_worker_uuid() self.log.debug('Start with worker_uuid: %s', self.worker_uuid) # always need to reset resource version since we don't know # when we last started, note for behavior below # https://github.com/kubernetes-client/python/blob/master/kubernetes/docs # /CoreV1Api.md#list_namespaced_pod KubeResourceVersion.reset_resource_version() self.task_queue = Queue() self.result_queue = Queue() self.kube_client = get_kube_client() self.kube_scheduler = AirflowKubernetesScheduler( self.kube_config, self.task_queue, self.result_queue, self.kube_client, self.worker_uuid ) self._inject_secrets() self.clear_not_launched_queued_tasks()
[docs] def execute_async(self, key, command, queue=None, executor_config=None): self.log.info( 'Add task %s with command %s with executor_config %s', key, command, executor_config ) kube_executor_config = KubernetesExecutorConfig.from_dict(executor_config) self.task_queue.put((key, command, kube_executor_config))
[docs] def sync(self): if self.running: self.log.debug('self.running: %s', self.running) if self.queued_tasks: self.log.debug('self.queued: %s', self.queued_tasks) self.kube_scheduler.sync() last_resource_version = None while not self.result_queue.empty(): results = self.result_queue.get() key, state, pod_id, resource_version = results last_resource_version = resource_version self.log.info('Changing state of %s to %s', results, state) try: self._change_state(key, state, pod_id) except Exception as e: self.log.exception('Exception: %s when attempting ' + 'to change state of %s to %s, re-queueing.', e, results, state) self.result_queue.put(results) KubeResourceVersion.checkpoint_resource_version(last_resource_version) for i in range(min((self.kube_config.worker_pods_creation_batch_size, self.task_queue.qsize()))): task = self.task_queue.get() try: self.kube_scheduler.run_next(task) except ApiException: self.log.exception('ApiException when attempting ' + 'to run task, re-queueing.') self.task_queue.put(task)
[docs] def _change_state(self, key, state, pod_id): if state != State.RUNNING: self.kube_scheduler.delete_pod(pod_id) try: self.log.info('Deleted pod: %s', str(key)) self.running.pop(key) except KeyError: self.log.debug('Could not find key: %s', str(key)) pass self.event_buffer[key] = state (dag_id, task_id, ex_time, try_number) = key with create_session() as session: item = session.query(TaskInstance).filter_by( dag_id=dag_id, task_id=task_id, execution_date=ex_time ).one() if state: item.state = state session.add(item)
[docs] def end(self): self.log.info('Shutting down Kubernetes executor') self.task_queue.join()