Source code for airflow.contrib.hooks.spark_jdbc_script

# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
#
import argparse
from pyspark.sql import SparkSession





[docs]def spark_write_to_jdbc(spark, url, user, password, metastore_table, jdbc_table, driver, truncate, save_mode, batch_size, num_partitions, create_table_column_types): writer = spark \ .table(metastore_table) \ .write \ # first set common options writer = set_common_options(writer, url, jdbc_table, user, password, driver) # now set write-specific options if truncate: writer = writer.option('truncate', truncate) if batch_size: writer = writer.option('batchsize', batch_size) if num_partitions: writer = writer.option('numPartitions', num_partitions) if create_table_column_types: writer = writer.option("createTableColumnTypes", create_table_column_types) writer \ .save(mode=save_mode)
[docs]def spark_read_from_jdbc(spark, url, user, password, metastore_table, jdbc_table, driver, save_mode, save_format, fetch_size, num_partitions, partition_column, lower_bound, upper_bound): # first set common options reader = set_common_options(spark.read, url, jdbc_table, user, password, driver) # now set specific read options if fetch_size: reader = reader.option('fetchsize', fetch_size) if num_partitions: reader = reader.option('numPartitions', num_partitions) if partition_column and lower_bound and upper_bound: reader = reader \ .option('partitionColumn', partition_column) \ .option('lowerBound', lower_bound) \ .option('upperBound', upper_bound) reader \ .load() \ .write \ .saveAsTable(metastore_table, format=save_format, mode=save_mode)
if __name__ == "__main__": # pragma: no cover # parse the parameters
[docs] parser = argparse.ArgumentParser(description='Spark-JDBC')
parser.add_argument('-cmdType', dest='cmd_type', action='store') parser.add_argument('-url', dest='url', action='store') parser.add_argument('-user', dest='user', action='store') parser.add_argument('-password', dest='password', action='store') parser.add_argument('-metastoreTable', dest='metastore_table', action='store') parser.add_argument('-jdbcTable', dest='jdbc_table', action='store') parser.add_argument('-jdbcDriver', dest='jdbc_driver', action='store') parser.add_argument('-jdbcTruncate', dest='truncate', action='store') parser.add_argument('-saveMode', dest='save_mode', action='store') parser.add_argument('-saveFormat', dest='save_format', action='store') parser.add_argument('-batchsize', dest='batch_size', action='store') parser.add_argument('-fetchsize', dest='fetch_size', action='store') parser.add_argument('-name', dest='name', action='store') parser.add_argument('-numPartitions', dest='num_partitions', action='store') parser.add_argument('-partitionColumn', dest='partition_column', action='store') parser.add_argument('-lowerBound', dest='lower_bound', action='store') parser.add_argument('-upperBound', dest='upper_bound', action='store') parser.add_argument('-createTableColumnTypes', dest='create_table_column_types', action='store') arguments = parser.parse_args() # Disable dynamic allocation by default to allow num_executors to take effect. spark = SparkSession.builder \ .appName(arguments.name) \ .enableHiveSupport() \ .getOrCreate() if arguments.cmd_type == "spark_to_jdbc": spark_write_to_jdbc(spark, arguments.url, arguments.user, arguments.password, arguments.metastore_table, arguments.jdbc_table, arguments.jdbc_driver, arguments.truncate, arguments.save_mode, arguments.batch_size, arguments.num_partitions, arguments.create_table_column_types) elif arguments.cmd_type == "jdbc_to_spark": spark_read_from_jdbc(spark, arguments.url, arguments.user, arguments.password, arguments.metastore_table, arguments.jdbc_table, arguments.jdbc_driver, arguments.save_mode, arguments.save_format, arguments.fetch_size, arguments.num_partitions, arguments.partition_column, arguments.lower_bound, arguments.upper_bound)

Was this entry helpful?